当前位置:首页 » 《随便一记》 » 正文

yolov8行人识别教程(2023年毕业设计+源码)

17 人参与  2023年03月31日 11:05  分类 : 《随便一记》  评论

点击全文阅读


yolov8识别视频

直接上YOLOv8的结构图吧,小伙伴们可以直接和YOLOv5进行对比,看看能找到或者猜到有什么不同的地方?

Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

SPPF改进

SPP结构又被称为空间金字塔池化,能将任意大小的特征图转换成固定大小的特征向量。

接下来我们来详述一下SPP是怎么处理滴~

输入层:首先我们现在有一张任意大小的图片,其大小为w * h。

输出层:21个神经元 -- 即我们待会希望提取到21个特征。

分析如下图所示:分别对1 * 1分块,2 * 2分块和4 * 4子图里分别取每一个框内的max值(即取蓝框框内的最大值),这一步就是作最大池化,这样最后提取出来的特征值(即取出来的最大值)一共有1 * 1 + 2 * 2 + 4 * 4 = 21个。得出的特征再concat在一起。

PAN-FPN改进

YOLOv6的neck结构图

我们再看YOLOv8的结构图:

YOLOv8的neck结构图

可以看到,相对于YOLOv5或者YOLOv6,YOLOv8将C3模块以及RepBlock替换为了C2f,同时细心可以发现,相对于YOLOv5和YOLOv6,YOLOv8选择将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。

2.4、Head部分都变了什么呢?

先看一下YOLOv5本身的Head(Coupled-Head):

YOLOv5的head结构图

而YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:

YOLOv8的head结构图

对比一下YOLOv5与YOLOv8的YAML

二、下载yolov8源码

yolov8源码链接:https://github.com/ultralytics/ultralytics

三、环境准备

环境如下:

Ubuntu18.04
cuda11.3
pytorch:1.11.0
torchvision:0.12.0

准备好环境后,先进入自己带pytorch的虚拟环境,与之前的yolo系列安装都不太一样,yolov8仅需要安装ultralytics这一个库就ok了。

 pip install ultralytics

另一种方法稍显麻烦,需要先克隆git仓库,再进行安装;二者取其一即可。

git clone https://github.com/ultralytics/ultralyticscd ultralyticspip install -e .

测试:

运行之后出现两张预测完的图片说明已经成功:

 

四、数据处理

在yolov8/data目录下新建Annotations, images, ImageSets, labels 四个文件夹
images目录下存放数据集的图片文件
Annotations目录下存放图片的xml文件(labelImg标注) 

 

 

 将xml文件转换成YOLO系列标准读取的txt文件

在同级目录下再新建一个文件XML2TXT.py
注意classes = [“…”]一定需要填写自己数据集的类别,在这里我是一个类别"fall",因此classes = [“fall”],代码如下所示:
如果数据集中的类别比较多不想手敲类别的,可以使用(4)中的脚本直接获取类别,同时还能查看各个类别的数据量,如果不想可以直接跳过(4)。
 

# -*- coding: utf-8 -*-# xml解析包import xml.etree.ElementTree as ETimport pickleimport osfrom os import listdir, getcwdfrom os.path import joinsets = ['train', 'test', 'val']classes = ['fall']# 进行归一化操作def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)    dw = 1./size[0]     # 1/w    dh = 1./size[1]     # 1/h    x = (box[0] + box[1])/2.0   # 物体在图中的中心点x坐标    y = (box[2] + box[3])/2.0   # 物体在图中的中心点y坐标    w = box[1] - box[0]         # 物体实际像素宽度    h = box[3] - box[2]         # 物体实际像素高度    x = x*dw    # 物体中心点x的坐标比(相当于 x/原图w)    w = w*dw    # 物体宽度的宽度比(相当于 w/原图w)    y = y*dh    # 物体中心点y的坐标比(相当于 y/原图h)    h = h*dh    # 物体宽度的宽度比(相当于 h/原图h)    return (x, y, w, h)    # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]# year ='2012', 对应图片的id(文件名)def convert_annotation(image_id):    '''    将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,    通过对其解析,然后进行归一化最终读到label文件中去,也就是说    一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去    labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个    '''    # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='utf-8')    # 准备在对应的image_id 中写入对应的label,分别为    # <object-class> <x> <y> <width> <height>    out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')    # 解析xml文件    tree = ET.parse(in_file)    # 获得对应的键值对    root = tree.getroot()    # 获得图片的尺寸大小    size = root.find('size')    # 如果xml内的标记为空,增加判断条件    if size != None:        # 获得宽        w = int(size.find('width').text)        # 获得高        h = int(size.find('height').text)        # 遍历目标obj        for obj in root.iter('object'):            # 获得difficult ??            difficult = obj.find('difficult').text            # 获得类别 =string 类型            cls = obj.find('name').text            # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过            if cls not in classes or int(difficult) == 1:                continue            # 通过类别名称找到id            cls_id = classes.index(cls)            # 找到bndbox 对象            xmlbox = obj.find('bndbox')            # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),                 float(xmlbox.find('ymax').text))            print(image_id, cls, b)            # 带入进行归一化操作            # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']            bb = convert((w, h), b)            # bb 对应的是归一化后的(x,y,w,h)            # 生成 calss x y w h 在label文件中            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')# 返回当前工作目录wd = getcwd()print(wd)for image_set in sets:    '''    对所有的文件数据集进行遍历    做了两个工作:    1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位    2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去         最后再通过直接读取文件,就能找到对应的label 信息    '''    # 先找labels文件夹如果不存在则创建    if not os.path.exists('data/labels/'):        os.makedirs('data/labels/')    # 读取在ImageSets/Main 中的train、test..等文件的内容    # 包含对应的文件名称    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()    # 打开对应的2012_train.txt 文件对其进行写入准备    list_file = open('data/%s.txt' % (image_set), 'w')    # 将对应的文件_id以及全路径写进去并换行    for image_id in image_ids:        list_file.write('data/images/%s.jpg\n' % (image_id))        # 调用  year = 年份  image_id = 对应的文件名_id        convert_annotation(image_id)    # 关闭文件    list_file.close()

查看自定义数据集标签类别及数量

在yolov8目录下再新建一个文件ViewCategory.py,将代码复制进去

import osfrom unicodedata import nameimport xml.etree.ElementTree as ETimport globdef count_num(indir):    label_list = []    # 提取xml文件列表    os.chdir(indir)    annotations = os.listdir('.')    annotations = glob.glob(str(annotations) + '*.xml')    dict = {}  # 新建字典,用于存放各类标签名及其对应的数目    for i, file in enumerate(annotations):  # 遍历xml文件        # actual parsing        in_file = open(file, encoding='utf-8')        tree = ET.parse(in_file)        root = tree.getroot()        # 遍历文件的所有标签        for obj in root.iter('object'):            name = obj.find('name').text            if (name in dict.keys()):                dict[name] += 1  # 如果标签不是第一次出现,则+1            else:                dict[name] = 1  # 如果标签是第一次出现,则将该标签名对应的value初始化为1    # 打印结果    print("各类标签的数量分别为:")    for key in dict.keys():        print(key + ': ' + str(dict[key]))        label_list.append(key)    print("标签类别如下:")    print(label_list)if __name__ == '__main__':    # xml文件所在的目录,修改此处    indir = 'data/Annotations'    count_num(indir)  # 调用函数统计各类标签数目

修改数据加载配置文件

进入data/文件夹,新建fall.yaml,内容如下,注意txt需要使用绝对路径

train: /home/xxx/yolov8/data/train.txtval: /home/xxx/yolov8/data/val.txttest: /home/xxx/yolov8/data/test.txt# number of classesnc: 1# class namesnames: ['fall']

五、模型训练

打开终端(或者pycharm等IDE),进入虚拟环境,随后进入yolov8文件夹,在终端中输入下面命令,即可开始训练。

yolo task=detect mode=train model=yolov8n.pt data=data/fall.yaml batch=32 epochs=100 imgsz=640 workers=16 device=0

六、模型验证

yolo task=detect mode=val model=runs/detect/train3/weights/best.pt data=data/fall.yaml device=0

七、模型预测

yolo task=detect mode=predict model=runs/detect/train3/weights/best.pt source=data/images device=0

八、模型导出

yolo task=detect mode=export model=runs/detect/train3/weights/best.pt

订阅专栏获得源码


点击全文阅读


本文链接:http://zhangshiyu.com/post/57527.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1