前言
- AnimeGAN是来自武汉大学和湖北工业大学的AI项目,是由神经网络风格迁移加生成对抗网络(GAN)而成,它是基于CartoonGAN的改进,并提出了一个更加轻量级的生成器架构。原理和训练代码转Github:https://github.com/TachibanaYoshino/AnimeGANv2,Pytorch版本:https://github.com/bryandlee/animegan2-pytorch。官方的有放出三个试玩的模型,有两个模型是针对人脸的,有一个是卡通效果,可以用来试试别的图像的,熟悉python和pytorch的直接git下来就可以本地部署了,就可以试玩了。
- 先看看人像的效果
- 我的demo里面的图像第一张是原图,第二第三张是人像模型,第四张是卡通效果。
风景的效果:
- 我这里用的是C++,环境是Win10,VS2019,OpenCV4.5,用的推理库是ncnn-20210720, 要用到GPU,所以要下VulkanSDK,GPU 是GTX1650。
一、环境安装
1.安装Vulkan各它的依赖库。
Vulkan https://vulkan.lunarg.com/sdk/home
版本:VulkanSDK-1.2.141.2
直接点击安装,把之后验证是否安装成功,运行xxx\VulkanSDK\1.2.141.2\Bin\vkcube.exe,出现下面图像代表安装成功。
glfw
https://www.glfw.org/
把glfw-3.3.2.bin.WIN64复制到VulkanSDK\1.2.141.2\Third-Party
GLM
https://github.com/g-truc/glm/
把GLM复制到VulkanSDK\1.2.141.2\Third-Party
添加系统环境变量
3.下载NCNN,可以直接下载对应自己IDE的relese版本的,免得编译麻烦,地址:https://github.com/Tencent/ncnn/releases。
4.下载OpenCV, 4.0以上就可以。
2. C++推理
1.先从 https://github.com/bryandlee/animegan2-pytorch 下载权重文件。然后按官方给的文档和脚本转成onnx模型。转成onnx之后也可以有用onnxruntime进行推理,我这里又把onnx转ncnn的推理模型,ncnn带有模型转换脚本,直接转就行。
2.把ncnn库,OpenCV,VulkanSDK的lib都加vs的库依赖里,然后加上OpenCV和VulkanSDK的动态库环境变量,就可以开始撸代码了。
3.测试代码:
#include <opencv2/opencv.hpp>
#include <ncnn/gpu.h>
#include <ncnn/net.h>
//模型路径
std::string celeba_model = "models/Celeba.bin";
std::string celeba_param = "models/Celeba.param";
std::string face_v1_model = "models/FacePointV1.bin";
std::string face_v1_param = "models/FacePointV1.param";
std::string face_v2_model = "models/FacePointV2.bin";
std::string face_v2_param = "models/FacePointV2.param";
//读取模型
int readModels(ncnn::Net& ncnn_net, std::string param_path, std::string model_path, bool use_gpu = true);
//推理,target_w,target_h为推理尺寸,越往大的改,细节保留就越多,也越吃GPU算力
int animeInference(const ncnn::Net& ncnn_net, const cv::Mat& cv_src, cv::Mat& cv_dst,int target_w = 512, int target_h = 512)
{
cv::Mat cv_backup = cv_src.clone();
const int w = cv_src.cols;
const int h = cv_src.rows;
const float mean_vals[3] = { 127.5f, 127.5f, 127.5f };
const float norm_vals[3] = { 1 / 127.5f, 1 / 127.5f, 1 / 127.5f };
ncnn::Mat in = ncnn::Mat::from_pixels_resize(cv_backup.data, ncnn::Mat::PIXEL_BGR2RGB, w, h, target_w, target_h);
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Mat out;
ncnn::Extractor ex = ncnn_net.create_extractor();
ex.input("input", in);
ex.extract("out", out);
cv::Mat result(out.h, out.w, CV_32FC3);
for (int i = 0; i < out.c; i++)
{
float* out_data = out.channel(i);
for (int h = 0; h < out.h; h++)
{
for (int w = 0; w < out.w; w++)
{
result.at<cv::Vec3f>(h, w)[2 - i] = out_data[h * out.h + w];
}
}
}
cv::Mat result8U(out.h, out.w, CV_8UC3);
result.convertTo(result8U, CV_8UC3, 255.0/2, 255.0/2);
result8U.copyTo(cv_dst);
cv::resize(cv_dst, cv_dst, cv_src.size());
return 0;
}
//调用,三种风格
int styletransferResult(const cv::Mat& cv_src, std::vector<cv::Mat>& cv_dsts, ncnn::Net& face_v1_net, ncnn::Net& face_v2_net, ncnn::Net& celeba_net)
{
animeInference(face_v1_net, cv_src, cv_dsts.at(0));
animeInference(face_v2_net, cv_src, cv_dsts.at(1));
animeInference(celeba_net, cv_src, cv_dsts.at(2));
}
int main(int argc, char** argv)
{
//图像路径
std::string path = "images";
std::vector<std::string> filenames;
cv::glob(path, filenames, false);
ncnn::Net face_v1_net, face_v2_net, celeba_net;
readModels(face_v1_net, face_v1_param, face_v1_model);
readModels(face_v2_net, face_v1_param, face_v1_model);
readModels(celeba_net, celeba_param, celeba_model);
for(auto v : filenames)
{
cv::Mat cv_src = cv::imread(v, 1);
std::vector<cv::Mat> cv_dsts(3);
double start = static_cast<double>(cv::getTickCount());
styletransferResult(cv_src, cv_dsts, face_v1_net, face_v2_net, celeba_net);
double time = ((double)cv::getTickCount() - start) / cv::getTickFrequency();
std::cout << "time:" << time << "(s)" << std::endl;
cv_src.push_back(cv_dsts.at(0));
cv_dsts.at(1).push_back(cv_dsts.at(2));
cv::Mat des;
des.create(cv_src.rows, cv_src.cols*2, cv_src.type());
cv::Mat r1 = des(cv::Rect(0, 0, cv_src.cols, cv_src.rows));
cv_src.copyTo(r1);
cv::Mat r2 = des(cv::Rect(cv_src.cols, 0, cv_src.cols,cv_src.rows));
cv_dsts.at(1).copyTo(r2);
imshow("style", des);
cv::imwrite(std::to_string(j)+".jpg", des);
// cv::waitKey();
}
return 0;
}
int readModels(ncnn::Net& ncnn_net,std::string param_path,std::string model_path, bool use_gpu)
{
bool has_gpu = false;
#if NCNN_VULKAN
ncnn::create_gpu_instance();
has_gpu = ncnn::get_gpu_count() > 0;
#endif
bool to_use_gpu = has_gpu && use_gpu;
ncnn_net.opt.use_vulkan_compute = to_use_gpu;
int rp = ncnn_net.load_param(param_path.c_str());
int rb = ncnn_net.load_model(model_path.c_str());
if (rp < 0 || rb < 0)
{
return 1;
}
return 0;
}
4.运行结果
5.跑起来很费GPU,如果有好一些的GPU,推理尺寸可以开大一点,细节的保留会更完整些,如果是前两种风格,图像尽量大于512*512,人像人脸特征明显,因为算法是基本于人脸关键点做的。
6.源码和可执行文件以上传到csdn,下载下来,把自己想试的图像放在images目录下,运行.exe文件,就可以在当前的得到最终合并的效果图像。源码下载地址:https://download.csdn.net/download/matt45m/47703588 ,可执行文件地址:https://download.csdn.net/download/matt45m/47701999