当前位置:首页 » 《随便一记》 » 正文

【人工智能课程】计算机科学博士作业一

24 人参与  2024年02月11日 15:31  分类 : 《随便一记》  评论

点击全文阅读


【人工智能课程】计算机科学博士作业一

1 任务要求

模型拟合:用深度神经网络拟合一个回归模型。从各种角度对其改进,评价指标为MSE。掌握技巧: 熟悉并掌握深度学习模型训练的基本技巧。提高PyTorch的使用熟练度。掌握改进深度学习的方法。

在这里插入图片描述

数据集下载:

Kaggle下载数据:
https://www.kaggle.com/competitions/ml2022spring-hw1 百度云下载数据: https://pan.baidu.com/s/1ahGxV7dO2JQMRCYbmDQyVg (提取码:ml22)

这是一个非时间序列的回归任务,预测公共场所获取的人群数据,预测会发生COVID-19阳性的人数。改进角度,参考博客:http://t.csdnimg.cn/fUAzT

在这里插入图片描述

2 baseline 代码

我将老师给的代码重构了结构,便于组员之间协作编程,无需修改的代码都放到了utils.py中。只需要修改特征选择、神经网络、模型训练部分的代码就可以。

2.1 导入包

# 数值、矩阵操作import math# 数据读取与写入make_dotimport pandas as pdimport osimport csv# 学习曲线绘制from torch.utils.tensorboard import SummaryWriterfrom utils import *

2.2 数据读取

# 设置随机种子便于复现same_seed(config['seed'])# 训练集大小(train_data size) : 2699 x 118 (id + 37 states + 16 features x 5 days) # 测试集大小(test_data size): 1078 x 117 (没有label (last day's positive rate))pd.set_option('display.max_column', 200) # 设置显示数据的列数train_df, test_df = pd.read_csv('./covid.train.csv'), pd.read_csv('./covid.test.csv')display(train_df.head(3)) # 显示前三行的样本train_data, test_data = train_df.values, test_df.valuesdel train_df, test_df # 删除数据减少内存占用train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])# 打印数据的大小print(f"""train_data size: {train_data.shape} valid_data size: {valid_data.shape} test_data size: {test_data.shape}""")

2.3 特征选择

def select_feat(train_data, valid_data, test_data, select_all=True):    '''    特征选择    选择较好的特征用来拟合回归模型    '''    y_train, y_valid = train_data[:,-1], valid_data[:,-1]    raw_x_train, raw_x_valid, raw_x_test = train_data[:,:-1], valid_data[:,:-1], test_data    if select_all:        feat_idx = list(range(raw_x_train.shape[1]))    else:        feat_idx = [0,1,2,3,4] # TODO: 选择需要的特征 ,这部分可以自己调研一些特征选择的方法并完善.    return raw_x_train[:,feat_idx], raw_x_valid[:,feat_idx], raw_x_test[:,feat_idx], y_train, y_valid# 特征选择x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])# 打印出特征数量.print(f'number of features: {x_train.shape[1]}')train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \                                            COVID19Dataset(x_valid, y_valid), \                                            COVID19Dataset(x_test)# 使用Pytorch中Dataloader类按照Batch将数据集加载train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

2.4 神经网络

class My_Model(nn.Module):    def __init__(self, input_dim):        super(My_Model, self).__init__()        # TODO: 修改模型结构, 注意矩阵的维度(dimensions)         self.layers = nn.Sequential(            nn.Linear(input_dim, 16),            nn.ReLU(),            nn.Linear(16, 8),            nn.ReLU(),            nn.Linear(8, 1)        )    def forward(self, x):        x = self.layers(x)        x = x.squeeze(1) # (B, 1) -> (B)        return x

2.5 模型训练

def trainer(train_loader, valid_loader, model, config, device):    criterion = nn.MSELoss(reduction='mean') # 损失函数的定义    # 定义优化器    # TODO: 可以查看学习更多的优化器 https://pytorch.org/docs/stable/optim.html     # TODO: L2 正则( 可以使用optimizer(weight decay...) )或者 自己实现L2正则.    optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)         # tensorboard 的记录器    # 将 train loss 保存到 "tensorboard/train" 文件夹    train_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'train'))    # 将 valid loss 保存到 "tensorboard/valid" 文件夹    valid_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'valid'))    if not os.path.isdir('./models'):        # 创建文件夹-用于存储模型        os.mkdir('./models')    n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0    for epoch in range(n_epochs):        model.train() # 训练模式        loss_record = []        # tqdm可以帮助我们显示训练的进度          train_pbar = tqdm(train_loader, position=0, leave=True)        # 设置进度条的左边 : 显示第几个Epoch了        train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')        for x, y in train_pbar:            optimizer.zero_grad()               # 将梯度置0.            x, y = x.to(device), y.to(device)   # 将数据一到相应的存储位置(CPU/GPU)            pred = model(x)                         loss = criterion(pred, y)            loss.backward()                     # 反向传播 计算梯度.            optimizer.step()                    # 更新网络参数            step += 1            loss_record.append(loss.detach().item())                        # 训练完一个batch的数据,将loss 显示在进度条的右边            train_pbar.set_postfix({'loss': loss.detach().item()})        mean_train_loss = sum(loss_record)/len(loss_record)                model.eval() # 将模型设置成 evaluation 模式.        loss_record = []        for x, y in valid_loader:            x, y = x.to(device), y.to(device)            with torch.no_grad():                pred = model(x)                loss = criterion(pred, y)            loss_record.append(loss.item())                    mean_valid_loss = sum(loss_record)/len(loss_record)        print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')        # 每个epoch,在tensorboard 中记录验证的损失(后面可以展示出来)        # 将训练损失和验证损失写入TensorBoard        train_writer.add_scalar('Train-Valid Loss', mean_train_loss, step)        valid_writer.add_scalar('Train-Valid Loss', mean_valid_loss, step)        if mean_valid_loss < best_loss:            best_loss = mean_valid_loss            torch.save(model.state_dict(), config['save_path']) # 模型保存            print('Saving model with loss {:.3f}...'.format(best_loss))            early_stop_count = 0        else:             early_stop_count += 1        if early_stop_count >= config['early_stop']:            print('\nModel is not improving, so we halt the training session.')            return        device = 'cuda' if torch.cuda.is_available() else 'cpu'model = My_Model(input_dim=x_train.shape[1]).to(device) # 将模型和训练数据放在相同的存储位置(CPU/GPU)trainer(train_loader, valid_loader, model, config, device)

2.6 模型可视化

%reload_ext tensorboard%tensorboard --logdir=tensorboard#执行完后这两行代码,在浏览器打开:http://localhost:6006/

打开后,将smoothing调为0,就不会有四条曲线了。如果不改为0,就会自动加入一条平滑后的曲线在图中,影响观察。
在这里插入图片描述

2.7 模型评价

model = My_Model(input_dim=x_train.shape[1]).to(device)model.load_state_dict(torch.load(config['save_path']))MSE = predict_MSE(valid_loader, model, device) print("MSE:",MSE) 

只跑了10epoch的MSE
MSE: 30.798155

2.8 新建一个utils.py文件

把以下代码放进去utils.py文件中,放到和以上代码文件同一级的目录

import torchimport torch.nn as nnfrom torch.utils.data import Dataset, DataLoader, random_splitimport numpy as npfrom tqdm import tqdmconfig = {    'seed': 5201314,      # 随机种子,可以自己填写. :)    'select_all': True,   # 是否选择全部的特征    'valid_ratio': 0.2,   # 验证集大小(validation_size) = 训练集大小(train_size) * 验证数据占比(valid_ratio)    'n_epochs': 10,     # 数据遍历训练次数    'batch_size': 256,    'learning_rate': 1e-5,    'early_stop': 400,    # 如果early_stop轮损失没有下降就停止训练.    'save_path': './models/model.ckpt'  # 模型存储的位置}def same_seed(seed):    '''    设置随机种子(便于复现)    '''    torch.backends.cudnn.deterministic = True    torch.backends.cudnn.benchmark = False    np.random.seed(seed)    torch.manual_seed(seed)    if torch.cuda.is_available():        torch.cuda.manual_seed_all(seed)    print(f'Set Seed = {seed}')def train_valid_split(data_set, valid_ratio, seed):    '''    数据集拆分成训练集(training set)和 验证集(validation set)    '''    valid_set_size = int(valid_ratio * len(data_set))    train_set_size = len(data_set) - valid_set_size    train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))    return np.array(train_set), np.array(valid_set)def predict(test_loader, model, device):    model.eval() # 设置成eval模式.    preds = []    for x in tqdm(test_loader):        x = x.to(device)        with torch.no_grad():            pred = model(x)            preds.append(pred.detach().cpu())    preds = torch.cat(preds, dim=0).numpy()    return predsdef predict_MSE(valid_loader, model, device):    model.eval() # 设置成eval模式.    preds = []    labels = []    for x,y in tqdm(valid_loader):        x = x.to(device)        with torch.no_grad():            pred = model(x)            preds.append(pred.detach().cpu())            labels.append(y)    preds = torch.cat(preds, dim=0).numpy()    labels = torch.cat(labels, dim=0).numpy()    # 计算MSE    mse = np.mean((preds - labels) ** 2)    return mseclass COVID19Dataset(Dataset):    '''    x: np.ndarray  特征矩阵.    y: np.ndarray  目标标签, 如果为None,则是预测的数据集    '''    def __init__(self, x, y=None):        if y is None:            self.y = y        else:            self.y = torch.FloatTensor(y)        self.x = torch.FloatTensor(x)    def __getitem__(self, idx):        if self.y is None:            return self.x[idx]        return self.x[idx], self.y[idx]    def __len__(self):        return len(self.x)

3 改进程序

以下统一设定1000epoch,改进角度包括
(1)特征选择

皮尔逊相关性 斯皮尔曼相关性

(2)模型改进

DNNFCDNNDenseNetResNet

(3)优化器

SGDAadmAdadelta

(4)余弦学习率

# 数值、矩阵操作import math# 数据读取与写入make_dotimport pandas as pdimport osimport csv# 学习曲线绘制from torch.utils.tensorboard import SummaryWriterfrom utils import *# 设置随机种子便于复现same_seed(config['seed'])# 训练集大小(train_data size) : 2699 x 118 (id + 37 states + 16 features x 5 days) # 测试集大小(test_data size): 1078 x 117 (没有label (last day's positive rate))pd.set_option('display.max_column', 200) # 设置显示数据的列数train_df, test_df = pd.read_csv('./covid.train.csv'), pd.read_csv('./covid.test.csv')display(train_df.head(3)) # 显示前三行的样本train_data, test_data = train_df.values, test_df.valuesdel train_df, test_df # 删除数据减少内存占用train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])# 打印数据的大小print(f"""train_data size: {train_data.shape} valid_data size: {valid_data.shape} test_data size: {test_data.shape}""")def select_feat(train_data, valid_data, test_data, select_all=True):    '''    特征选择    选择较好的特征用来拟合回归模型    '''    y_train, y_valid = train_data[:,-1], valid_data[:,-1]    raw_x_train, raw_x_valid, raw_x_test = train_data[:,:-1], valid_data[:,:-1], test_data    if select_all:        feat_idx = list(range(raw_x_train.shape[1]))    else:        # feat_idx = [0,1,2,3,4] # TODO: 选择需要的特征 ,这部分可以自己调研一些特征选择的方法并完善.        # feat_idx = range(0,117)        correlation_matrix = np.corrcoef(raw_x_train, rowvar=False)        corr_with_target = np.abs(correlation_matrix[-1, :-1])        feat_idx = list(np.argsort(corr_with_target)[::-1][:100])  # 选择与目标变量相关性最高的五个特征索引        return raw_x_train[:,feat_idx], raw_x_valid[:,feat_idx], raw_x_test[:,feat_idx], y_train, y_valid# 特征选择x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])# 打印出特征数量.print(f'number of features: {x_train.shape[1]}')train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \                                            COVID19Dataset(x_valid, y_valid), \                                            COVID19Dataset(x_test)# 使用Pytorch中Dataloader类按照Batch将数据集加载train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)class Raw_Model(nn.Module):    def __init__(self, input_dim):        super(Raw_Model, self).__init__()        # TODO: 修改模型结构, 注意矩阵的维度(dimensions)         self.layers = nn.Sequential(            nn.Linear(input_dim, 16),            nn.ReLU(),            nn.Linear(16, 8),            nn.ReLU(),            nn.Linear(8, 1)        )    def forward(self, x):        x = self.layers(x)        x = x.squeeze(1) # (B, 1) -> (B)        return ximport torchimport torch.nn as nnimport torch.nn.functional as Fclass FCNN_Model(nn.Module):    def __init__(self, input_dim):        super(FCNN_Model, self).__init__()        # 修改模型结构        self.layers = nn.Sequential(            nn.Linear(input_dim, 64),            nn.BatchNorm1d(64),            nn.LeakyReLU(0.01),  # 使用LeakyReLU            nn.Dropout(0.3),            nn.Linear(64, 32),            nn.BatchNorm1d(32),            nn.LeakyReLU(0.01),  # 使用LeakyReLU            nn.Dropout(0.3),            nn.Linear(32, 16),            nn.BatchNorm1d(16),            nn.LeakyReLU(0.01),  # 使用LeakyReLU            nn.Dropout(0.3),            nn.Linear(16, 1)        )    def forward(self, x):        x = self.layers(x)        x = x.squeeze(1)  # (B, 1) -> (B)        return ximport torchimport torch.nn as nnimport torch.nn.functional as F# 定义基础的残差块class ResidualBlock(nn.Module):    def __init__(self, input_dim):        super(ResidualBlock, self).__init__()        self.fc1 = nn.Linear(input_dim, input_dim)        self.relu = nn.ReLU(inplace=True)        self.fc2 = nn.Linear(input_dim, input_dim)    def forward(self, x):        residual = x        out = self.fc1(x)        out = self.relu(out)        out = self.fc2(out)        out += residual  # 这里添加了跳越连接        out = self.relu(out)        return out# 将模型定义为一个等于ResNet的回归模型class RegressionResNet(nn.Module):    def __init__(self, input_dim, num_blocks=2):        super(RegressionResNet, self).__init__()        # 输入层        self.input_fc = nn.Linear(input_dim, input_dim)        # 创建残差块堆叠        self.res_blocks = nn.Sequential(            *[ResidualBlock(input_dim) for _ in range(num_blocks)]        )        # 输出层        self.output_fc = nn.Linear(input_dim, 1)    def forward(self, x):        x = F.relu(self.input_fc(x))        x = self.res_blocks(x)        x = self.output_fc(x)        x = x.squeeze(1) # (B, 1) -> (B)        return ximport torchimport torch.nn as nnimport torch.nn.functional as Fclass DenseLayer(nn.Module):    def __init__(self, in_channels, growth_rate):        super(DenseLayer, self).__init__()        # A single Dense Layer within a Dense Block        self.dense_layer = nn.Sequential(            nn.BatchNorm1d(in_channels),            nn.ReLU(inplace=True),            nn.Linear(in_channels, growth_rate),            nn.Dropout(0.2) # Dropout for regularization        )    def forward(self, x):        new_features = self.dense_layer(x)        # Concatenating the input features with the new features        return torch.cat([x, new_features], 1)class DenseBlock(nn.Module):    def __init__(self, num_layers, in_channels, growth_rate):        super(DenseBlock, self).__init__()        self.block = nn.Sequential()        for i in range(num_layers):            layer = DenseLayer(in_channels + i * growth_rate, growth_rate)            self.block.add_module(f"dense_layer_{i + 1}", layer)    def forward(self, x):        return self.block(x)class TransitionLayer(nn.Module):    def __init__(self, in_channels, out_channels):        super(TransitionLayer, self).__init__()        # This layer reduces the number of features (compression)        self.transition = nn.Sequential(            nn.BatchNorm1d(in_channels),            nn.ReLU(inplace=True),            nn.Linear(in_channels, out_channels),            nn.Dropout(0.2) # Dropout for regularization        )    def forward(self, x):        return self.transition(x)class My_DenseNet_Model(nn.Module):    def __init__(self, input_dim, num_classes=1, growth_rate=12, block_config=(6, 12, 24), compression=0.5):        super(My_DenseNet_Model, self).__init__()        # Initial convolution layer        self.init_features = nn.Sequential(            nn.Linear(input_dim, growth_rate * 2),            nn.ReLU(inplace=True)        )        # DenseBlocks and TransitionLayers        num_features = growth_rate * 2  # Initial number of features        self.features = nn.Sequential()        for i, num_layers in enumerate(block_config):            block = DenseBlock(num_layers=num_layers, in_channels=num_features, growth_rate=growth_rate)            self.features.add_module(f"denseblock_{i + 1}", block)            num_features += num_layers * growth_rate            if i != len(block_config) - 1:  # Do not add Transition Layer after the last block                trans = TransitionLayer(in_channels=num_features, out_channels=int(num_features * compression))                self.features.add_module(f"transition_{i + 1}", trans)                num_features = int(num_features * compression)        # Final batch normalization        self.features.add_module('norm5', nn.BatchNorm1d(num_features))        # Linear layer for regression        self.classifier = nn.Linear(num_features, num_classes)    def forward(self, x):        x = self.init_features(x)        x = self.features(x)        x = F.relu(x, inplace=True)        x = F.avg_pool1d(x, kernel_size=1).view(x.size(0), -1)        x = self.classifier(x)        return xfrom torch.optim.lr_scheduler import CosineAnnealingLRdef trainer(train_loader, valid_loader, model, config, device):    criterion = nn.MSELoss(reduction='mean') # 损失函数的定义    # 定义优化器    optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)     # optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate'])     # optimizer = torch.optim.Adadelta(model.parameters(), lr=config['learning_rate'], rho=0.9, eps=1e-06, weight_decay=0)    # tensorboard 的记录器    # 将 train loss 保存到 "tensorboard/train" 文件夹    train_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'train'))    # 将 valid loss 保存到 "tensorboard/valid" 文件夹    valid_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'valid'))    # 添加余弦退火调度器    scheduler = CosineAnnealingLR(optimizer, T_max=config['n_epochs'], eta_min=0)        if not os.path.isdir('./models'):        # 创建文件夹-用于存储模型        os.mkdir('./models')    n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0    for epoch in range(n_epochs):        model.train() # 训练模式        loss_record = []        # tqdm可以帮助我们显示训练的进度          train_pbar = tqdm(train_loader, position=0, leave=True)        # 设置进度条的左边 : 显示第几个Epoch了        train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')        for x, y in train_pbar:            optimizer.zero_grad()               # 将梯度置0.            x, y = x.to(device), y.to(device)   # 将数据一到相应的存储位置(CPU/GPU)            pred = model(x)                         loss = criterion(pred, y)            loss.backward()                     # 反向传播 计算梯度.            optimizer.step()                    # 更新网络参数            step += 1            loss_record.append(loss.detach().item())                        # 训练完一个batch的数据,将loss 显示在进度条的右边            train_pbar.set_postfix({'loss': loss.detach().item()})        mean_train_loss = sum(loss_record)/len(loss_record)                model.eval() # 将模型设置成 evaluation 模式.        loss_record = []        for x, y in valid_loader:            x, y = x.to(device), y.to(device)            with torch.no_grad():                pred = model(x)                loss = criterion(pred, y)            loss_record.append(loss.item())                    mean_valid_loss = sum(loss_record)/len(loss_record)        print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')        # 每个epoch,在tensorboard 中记录验证的损失(后面可以展示出来)        # 将训练损失和验证损失写入TensorBoard        train_writer.add_scalar('Train-Valid Loss', mean_train_loss, step)        valid_writer.add_scalar('Train-Valid Loss', mean_valid_loss, step)        if mean_valid_loss < best_loss:            best_loss = mean_valid_loss            torch.save(model.state_dict(), config['save_path']) # 模型保存            print('Saving model with loss {:.3f}...'.format(best_loss))            early_stop_count = 0        else:             early_stop_count += 1        if early_stop_count >= config['early_stop']:            print('\nModel is not improving, so we halt the training session.')            return        # 更新学习率        scheduler.step()device = 'cuda' if torch.cuda.is_available() else 'cpu'model = Raw_Model(input_dim=x_train.shape[1]).to(device) # model = RegressionResNet(input_dim=x_train.shape[1],num_blocks=10).to(device) # model = My_DenseNet_Model(input_dim=x_train.shape[1]).to(device)# model = FCNN_Model(input_dim=x_train.shape[1]).to(device)trainer(train_loader, valid_loader, model, config, device)# model = RegressionResNet(input_dim=x_train.shape[1],num_blocks=10).to(device)# model = My_DenseNet_Model(input_dim=x_train.shape[1]).to(device)model = Raw_Model(input_dim=x_train.shape[1]).to(device)# model = FCNN_Model(input_dim=x_train.shape[1]).to(device)model.load_state_dict(torch.load(config['save_path']))MSE = predict_MSE(valid_loader, model, device) print("MSE:",MSE) 

请添加图片描述

请添加图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

请添加图片描述


点击全文阅读


本文链接:http://zhangshiyu.com/post/68164.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1