当前位置:首页 » 《随便一记》 » 正文

随机森林算法(Random Forest)R语言实现

24 人参与  2023年05月08日 09:13  分类 : 《随便一记》  评论

点击全文阅读


随机森林

1. 使用Boston数据集进行随机森林模型构建2. 数据集划分3.构建自变量与因变量之间的公式4. 模型训练5. 寻找合适的ntree6. 查看变量重要性并绘图展示7. 偏依赖图:Partial Dependence Plot(PDP图)8. 训练集预测结果

1. 使用Boston数据集进行随机森林模型构建

library(rio)library(ggplot2)library(magrittr)library(randomForest)library(tidyverse)library(skimr)library(DataExplorer)library(caret)library(varSelRF)library(pdp)library(iml)data("boston")as.data.frame(boston)skim(boston)#数据鸟瞰plot_missing(boston)#数据缺失#na.roughfix() #填补缺失hist(boston$lstat,breaks = 50)

数据展示:
在这里插入图片描述

2. 数据集划分

####################################### 1.数据集划分set.seed(123)trains <- createDataPartition(y = boston$lstat,p=0.70,list = F)traindata <- boston[trains,]testdata <- boston[-trains,]

3.构建自变量与因变量之间的公式

#因变量自变量构建公式colnames(boston)form_reg <- as.formula(paste0("lstat ~",                              paste(colnames(traindata)[1:15],collapse = "+")))form_reg

在这里插入图片描述
构建的公式:
在这里插入图片描述

4. 模型训练

#### 2.1模型mtry的最优选取,mry=12 % Var explained最佳#默认情况下数据集变量个数的二次方根(分类模型)或1/3(预测模型)set.seed(123)n <- ncol(boston)-5errRate <- c(1) #设置模型误判率向量初始值for (i in 1:n) {  rf_train <- randomForest(form_reg, data = traindata,                           ntree = 1000,#决策树的棵树                           p =0.8,                           mtry = i,#每个节点可供选择的变量数目                           importance = T #输出变量的重要性  )  errRate[i] <- mean(rf_train$mse)  print(rf_train)}m= which.min(errRate)  print(m)

结果:
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 1

      Mean of squared residuals: 13.35016                % Var explained: 72.5

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 2

      Mean of squared residuals: 11.0119                % Var explained: 77.31

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 3

      Mean of squared residuals: 10.51724                % Var explained: 78.33

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 4

      Mean of squared residuals: 10.41254                % Var explained: 78.55

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 5

      Mean of squared residuals: 10.335                % Var explained: 78.71

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 6

      Mean of squared residuals: 10.22917                % Var explained: 78.93

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 7

      Mean of squared residuals: 10.25744                % Var explained: 78.87

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 8

      Mean of squared residuals: 10.11666                % Var explained: 79.16

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 9

      Mean of squared residuals: 10.09725                % Var explained: 79.2

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 10

      Mean of squared residuals: 10.09231                % Var explained: 79.21

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 11

      Mean of squared residuals: 10.12222                % Var explained: 79.15

在这里插入图片描述
结果显示mtry为11误差最小,精度最高

5. 寻找合适的ntree

#### 寻找合适的ntreeset.seed(123)rf_train<-randomForest(form_reg,data=traindata,                       mtry=11,ntree=500,importance = T,proximity=TRUE)plot(rf_train,main = "ERROR & TREES")    #绘制模型误差与决策树数量关系图

运行结果:

在这里插入图片描述

在这里插入图片描述

6. 查看变量重要性并绘图展示

#### 变量重要性importance<-importance(rf_train) ##### 绘图法1barplot(rf_train$importance[,1],main="输入变量重要性测度指标柱形图")box()

重要性展示:
在这里插入图片描述

##### 绘图法2varImpPlot(rf_train,main = "Variable Importance plot")varImpPlot(rf_train,main = "Variable Importance plot",type = 1)varImpPlot(rf_train,sort=TRUE,           n.var=nrow(rf_train$importance),           main = "Variable Importance plot",type = 2) # 基尼系数hist(treesize(rf_train)) #展示随机森林模型中每棵决策树的节点数max(treesize(rf_train));min(treesize(rf_train))

“%IncMSE” 即increase in mean squared error,通过对每一个预测变量随机赋值,如果该预测变量更为重要,那么其值被随机替换后模型预测的误差会增大。“IncNodePurity”即increase in node purity,通过残差平方和来度量,代表了每个变量对分类树每个节点上观测值的异质性的影响,从而比较变量的重要性。两个指示值均是判断预测变量重要性的指标,均是值越大表示该变量的重要性越大,但分别基于两者的重要性排名存在一定的差异。

在这里插入图片描述

7. 偏依赖图:Partial Dependence Plot(PDP图)

部分依赖图可以显示目标和特征之间的关系是线性的、单调的还是更复杂的
缺点: 部分依赖函数中现实的最大特征数是两个,这不是PDP的错,而是2维表示(纸或屏幕)的错,是我们无法想象超过3维的错。

partialPlot(x = rf_train,            pred.data = traindata,            x.var = cmedv )

PDP图:
在这里插入图片描述

rf_train %>%  partial(pred.var = c("cmedv", "age"), chull = TRUE, progress = TRUE) %>%  autoplot(contour = TRUE, legend.title = "SOS",           option = "B", direction = -1) + theme_bw()+  theme(text=element_text(size=12,  family="serif"))

交互结果展示:
在这里插入图片描述

#预测与指标的关系散点图plot(lstat ~ cmedv, data = traindata)

在这里插入图片描述

8. 训练集预测结果

#图示训练集预测结果plot(x = traindata$lstat,     y = trainpred,     xlab = "实际值",     ylab = "预测值",     main = "随机森林-实际值与预测值比较")trainlinmod <- lm(trainpred ~ traindata$lstat) #拟合回归模型abline(trainlinmod, col = "blue",lwd =2.5, lty = "solid")abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))

在这里插入图片描述

#测试集预测结果testpred <- predict(rf_train,newdata = testdata)#测试集预测误差结果defaultSummary(data.frame(obs = testdata$lstat,pred = testpred))#图示测试集结果plot(x = testdata$lstat,     y = testpred,     xlab = "实际值",     ylab = "预测值",     main = "随机森林-实际值与预测值比较")testlinmod <- lm(testpred ~ testdata$lstat)abline(testlinmod, col = "blue",lwd =2.5, lty = "solid")abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))

在这里插入图片描述


点击全文阅读


本文链接:http://zhangshiyu.com/post/61485.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1