当前位置:首页 » 《随便一记》 » 正文

【R语言】——基因GO/KEGG富集分析!超级简单的保姆级教程!

1 人参与  2023年03月30日 11:21  分类 : 《随便一记》  评论

点击全文阅读


上期“干货预警——原来基因功能富集分析这么简单!”和“【R语言】——基因GO/KEGG功能富集结果可视化(保姆级教程)”介绍如何使用DAVID在线分析工具对基因进行GO/KEGG功能富集分析和使用R ggplot包对获得的基因GO/KEGG功能富集结果进行可视化。本期介绍使用R clusterProfiler包和R AnnotationHub包对基因进行GO/KEGG功能富集分析、OrgDb包制作以及结果可视化。

GO/KEGG功能富集分析中重要的是背景基因的选择,使用R clusterProfiler包对基因进行富集,需要导入目的基因(前景基因)相对应物种的参考基因组(背景基因),现阶段“bioconductor”已有十几种常见动物,如人类、小鼠等物种的OrgDb。但仍然有许多物种不在Bioconductor的OrgDb列表里,但存在参考基因组,如山羊,绵羊等,这种情况则需要用到R AnnotationHub包进行索引其对应物种的参考基因组,并制作OrgDb包使用。

1 数据准备

数据输入格式(xlsx格式):

2 R包加载、数据导入及处理

#下载包#if(!requireNamespace("BiocManager", quietly = TRUE))  install.packages("BiocManager")BiocManager::install("clusterProfiler") BiocManager::install("topGO") BiocManager::install("Rgraphviz") BiocManager::install("pathview") install.packages("ggplot2")BiocManager::install('stringr')install.packages("openxlsx")#加载包#library(clusterProfiler)library(topGO)library(Rgraphviz)library(pathview)library(ggplot2)library(stringr)library(openxlsx) #导入数据#remove(list = ls()) #清除 Global Environmentgetwd()  #查看当前工作路径setwd("C:/Rdata/jc")  #设置需要的工作路径list.files()  #查看当前工作目录下的文件data = read.xlsx("enrich-gene.xlsx",sheet= "enrich_genes",sep=',') #导入数据head(data)
#数据处理-差异基因筛选#vector = abs(data$log2FC) > 1 & data$PValue < 0.05 & data$gene_name !="" ##abs绝对值;通常logFC> 1和PValue< 0.05条件进行筛选;data$gene_name != ""表示gene_name不为空白#data$gene_name<-str_to_title(data$gene_name)#用stringr将基因名称的第一个字母大写(小鼠首字母为大写)data_sgni= data[vector,]#筛选差异基因head(data_sgni)#All_gene <- rownames(data) # 提取所有基因基因名

3 背景基因选择及GO/KEGG富集分析

3.1 在“bioconductor”中已有OrgDb的物种的富集分析

在http://bioconductor.org/packages/release/BiocViews.html#___OrgDb 中寻找需要物种的OrgDb(目前仅有下图所示物种),以人类“org.Hs.eg.db”为例:

图1 “bioconductor”中已有OrgDb的物种

#已有OrgDb的常见物种#BiocManager::install("org.Hs.eg.db") library(org.Hs.eg.db)#基因ID转换#keytypes(org.Hs.eg.db) #查看所有可转化类型entrezid_all = mapIds(x = org.Hs.eg.db,  #id转换的比对基因组(背景基因)的物种,以人为例                      keys = data_sgni$gene_name, #将输入的gene_name列进行数据转换                      keytype = "SYMBOL", #输入数据的类型                      column = "ENTREZID")#输出数据的类型entrezid_all  = na.omit(entrezid_all)  #na省略entrezid_all中不是一一对应的数据情况entrezid_all = data.frame(entrezid_all) #将entrezid_all变成数据框格式head(entrezid_all)
###GO富集分析###GO_enrich = enrichGO(gene = entrezid_all[,1], #表示前景基因,即待富集的基因列表;[,1]表示对entrezid_all数据集的第1列进行处理                     OrgDb = org.Hs.eg.db,                      keyType = "ENTREZID", #输入数据的类型                     ont = "ALL", #可以输入CC/MF/BP/ALL                     #universe = 背景数据集 # 表示背景基因,无参的物种选择组装出来的全部unigenes作为背景基因;有参背景基因则不需要。                     pvalueCutoff = 1,qvalueCutoff = 1, #表示筛选的阈值,阈值设置太严格可导致筛选不到基因。可指定 1 以输出全部                     readable = T) #是否将基因ID映射到基因名称。GO_enrich  = data.frame(GO_enrich) #将GO_enrich导成数据框格式#数据导出#write.csv(GO_enrich,'C:/Rdata/保存文件/GO_enrich.csv') 
###KEGG富集分析###KEGG_enrich = enrichKEGG(gene = entrezid_all[,1], #即待富集的基因列表                         keyType = "kegg",                         pAdjustMethod = 'fdr',  #指定p值校正方法                         organism= "human",  #hsa,可根据你自己要研究的物种更改,可在https://www.kegg.jp/brite/br08611中寻找                         qvalueCutoff = 1, #指定 p 值阈值(可指定 1 以输出全部)                         pvalueCutoff=1) #指定 q 值阈值(可指定 1 以输出全部)KEGG_enrich  = data.frame(KEGG_enrich)write.csv(KEGG_enrich,'C:/Rdata/保存文件/KEGG_enrich.csv') #数据导出

3.2 使用“AnnotationHub”获取在线注释并创建OrgDb对象

如果你所研究的物种不在Bioconductor的OrgDb列表里,但存在参考基因组,如山羊(Capra hircus/goat/chx),绵羊(sheet/Ovis aries)等,这种情况则需要用到AnnotationHub函数进行索引其对应物种的参考基因组(背景基因),并制作OrgDb包使用。

注意:AnnotationHub包连接的Bioconductor数据库是实时更新的,所以需要用到的时候再在线查询和使用。

###制作可索引到物种的OrgDb包####下载和加载包#BiocManager::install("AnnotationHub") BiocManager::install("AnnotationDbi")BiocManager::install("rtracklayer")library(AnnotationHub)library(AnnotationDbi)library(rtracklayer)#索引与制作OrgDb#hub <- AnnotationHub() #建立AnnotationHub对象保存到hubquery(hub, 'Capra hircus')  #查询包含山羊(Capra hircus)的物种信息;结果有物种的各类信息需要进一步筛选query(hub[hub$rdataclass == "OrgDb"] , "Capra hircus") #筛选我们需要OrgDb类型;也可将上一步与这一步合并成query(hub,'org.Capra hircus')进行搜索goat <- hub[['AH101444']]  #制作Capra hircus的OrgDb库;AH101444是Capra hircus对应的编号。goat #查看goat#help('select') 
#保存、载入与查看-AnnotationDbi#saveDb(goat,file="goat.OrgDb") #把goat对象保存成goat.OrgDb文件goat = loadDb(file="goat.OrgDb") #载入goat.OrgDb文件,保存到goatlength(keys(goat)) #查看包含的基因数量columns(goat) #查看goat的数据类型keys(goat, keytype = "SYMBOL") #查看SYMBOL数据集下的ID
# 查看AnnotationHub内容——根据自己兴趣了解##display(hub) #调出网页#unique(hub$species) #查看hub里包含的所有物种#unique(hub$rdataclass) #查看hub里的数据类型#hub[hub$rdataclass == "OrgDb"] #查看hub里OrgDb类型的数据
#基因ID转换#keytypes(goat) #查看所有可转化类型entrezid_all = mapIds(x = goat,  #id转换的比对基因组(背景基因)所属物种,这边为山羊                      keys = data_sgni$gene_name, #将输入的gene_name列进行数据转换                      keytype = "SYMBOL", #输入数据的类型                      column = "ENTREZID")#输出数据的类型entrezid_all = na.omit(entrezid_all)  #na省略entrezid_all中不是一一对应的数据情况entrezid_all = data.frame(entrezid_all) #将entrezid_all变成数据框格式head(entrezid_all)#GO富集分析#GO_enrich = enrichGO(gene = entrezid_all[,1],  #待富集的基因列表                      OrgDb = goat,  #指定物种的基因数据库,goat直接赋值给OrgDb参数即可                      keyType = 'ENTREZID',  #输入数据的类型                      ont = 'ALL',  #可指定 BP\MF\CC\ALL                       pAdjustMethod = 'fdr',  #指定 p 值校正方法                      pvalueCutoff = 1,  #指定 p 值阈值(指定 1 以输出全部)                      qvalueCutoff = 1,  #指定 q 值阈值(指定 1 以输出全部)                      readable = FALSE)GO_enrich = data.frame(GO_enrich)write.csv(GO_enrich,'C:/Rdata/保存文件/GO_enrich.csv') #数据导出####KEGG富集分析###KEGG_enrich = enrichKEGG(gene = entrezid_all[,1], #即待富集的基因列表                         keyType = "kegg",                         pAdjustMethod = 'fdr',  #指定p值校正方法                         organism= "chx",  #山羊,可根据你自己要研究的物种更改,可在https://www.kegg.jp/brite/br08611中寻找                         qvalueCutoff = 1, #指定 p 值阈值(可指定 1 以输出全部)                         pvalueCutoff=1) #指定 q 值阈值(可指定 1 以输出全部)KEGG_enrich  = data.frame(KEGG_enrich)write.csv(KEGG_enrich,'C:/Rdata/保存文件/KEGG_enrich.csv') #数据导出

输出的GO/KEGG富集结果各列内容:

ONTOLOGY:GO的BP(生物学过程)、CC(细胞组分)或MF(分子功能)三个方面内容;

ID:富集到的GO term/KEGG term;

Description:对GO term/KEGG term的生物学功能和意义进行描述;

GeneRatio:富集到该GO term/KEGG term中的基因数目/给定基因的总数目;

BgRatio:该GO term/KEGG term中背景基因总数目/该物种所有已知GO功能基因的数目;

pvalue、p.adjust和qvalue:p值、校正后p值和q值;

geneID和Count:富集到该GO term/KEGG term中的基因名称和数目。

4 GO/KEGG富集结果可视化

###GO/KEGG富集结果可视化####数据载入与处理#install.packages("ggplot2")library(ggplot2)go_enrich = read.xlsx("enrich-gene.xlsx",sheet= "ONTOLOGY",sep=',')  go_enrich$term <- paste(go_enrich$ID, go_enrich$Description, sep = ': ') #将ID与Description合并成新的一列go_enrich$term <- factor(go_enrich$term, levels = go_enrich$term,ordered = T)
#纵向柱状图#ggplot(go_enrich,        aes(x=term,y=Count, fill=ONTOLOGY)) + #x、y轴定义;根据ONTOLOGY填充颜色  geom_bar(stat="identity", width=0.8) +  #柱状图宽度  scale_fill_manual(values = c("#6666FF", "#33CC33", "#FF6666") ) +  #柱状图填充颜色  facet_grid(ONTOLOGY~., scale = 'free_y', space = 'free_y')+  coord_flip() +  #让柱状图变为纵向  xlab("GO term") +  #x轴标签  ylab("Gene_Number") +  #y轴标签  labs(title = "GO Terms Enrich")+  #设置标题  theme_bw()#help(theme) #查阅这个函数其他具体格式
#横向柱状图#ggplot(go_enrich,        aes(x=term,y=Count, fill=ONTOLOGY)) +  #x、y轴定义;根据ONTOLOGY填充颜色  geom_bar(stat="identity", width=0.8) +  #柱状图宽度  scale_fill_manual(values = c("#6666FF", "#33CC33", "#FF6666") ) + #柱状图填充颜色  facet_grid(.~ONTOLOGY, scale = 'free_x', space = 'free_x')+  xlab("GO term") + #x轴标签  ylab("Gene_Number") +  #y轴标签  labs(title = "GO Terms Enrich")+ #设置标题  theme_bw() +   theme(axis.text.x=element_text(family="sans",face = "bold", color="gray50",angle = 70,vjust = 1, hjust = 1 )) #对字体样式、颜色、还有横坐标角度()
#气泡图#ggplot(go_enrich,       aes(y=term,x=Count))+  geom_point(aes(size=Count,color=p.adjust))+  facet_grid(ONTOLOGY~., scale = 'free_y', space = 'free_y')+  scale_color_gradient(low = "red",high ="blue")+  labs(color=expression(PValue,size="Count"),        x="Gene Ratio",y="GO term",title="GO Enrichment")+  theme_bw()

图1 为GO富集结果图

KEGG富集结果与GO富集结果可视化类似可参考上一期“【R语言】——基因GO/KEGG功能富集结果可视化(保姆级教程)”内容。

好了本次分享就到这里,下期有更精彩内容,敬请期待。

关注“在打豆豆的小潘学长”公众号,发送“富集分析2”获得完整代码包和演示数据。


点击全文阅读


本文链接:http://zhangshiyu.com/post/57276.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

最新文章

  • 祖母寿宴,侯府冒牌嫡女被打脸了(沈屿安秦秀婉)阅读 -
  • 《雕花锦年,昭都旧梦》(裴辞鹤昭都)完结版小说全文免费阅读_最新热门小说《雕花锦年,昭都旧梦》(裴辞鹤昭都) -
  • 郊区41号(许洛竹王云云)完整版免费阅读_最新全本小说郊区41号(许洛竹王云云) -
  • 负我情深几许(白诗茵陆司宴)完结版小说阅读_最热门小说排行榜负我情深几许白诗茵陆司宴 -
  • 九胞胎孕妇赖上我萱萱蓉蓉免费阅读全文_免费小说在线看九胞胎孕妇赖上我萱萱蓉蓉 -
  • 为保白月光,侯爷拿我抵了债(谢景安花田)小说完结版_完结版小说全文免费阅读为保白月光,侯爷拿我抵了债谢景安花田 -
  • 陆望程映川上官硕《我的阿爹是带攻略系统的替身》最新章节阅读_(我的阿爹是带攻略系统的替身)全章节免费在线阅读陆望程映川上官硕
  • 郑雅琴魏旭明免费阅读_郑雅琴魏旭明小说全文阅读笔趣阁
  • 头条热门小说《乔书意贺宴临(乔书意贺宴临)》乔书意贺宴临(全集完整小说大结局)全文阅读笔趣阁
  • 完结好看小说跨年夜,老婆初恋送儿子故意出车祸_沈月柔林瀚枫完结的小说免费阅读推荐
  • 热推《郑雅琴魏旭明》郑雅琴魏旭明~小说全文阅读~完本【已完结】笔趣阁
  • 《你的遗憾与我无关》宋怀川冯洛洛无弹窗小说免费阅读_免费小说大全《你的遗憾与我无关》宋怀川冯洛洛 -

    关于我们 | 我要投稿 | 免责申明

    Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1