当前位置:首页 » 《关注互联网》 » 正文

手把手搭建一个【卷积神经网络】_黎国溥

28 人参与  2021年06月26日 13:43  分类 : 《关注互联网》  评论

点击全文阅读


前言

本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对10种常见的物体进行识别分类;使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“汽车”,或“鸟”,还是其它。

 

思路流程

  1. 导入 CIFAR10 数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络结构、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型

 

一、导入 CIFAR10 数据集

使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;

此数据集中 50000 个样例被作为训练集(每张图片对于一个标签),剩余 10000 个样例作为测试集(每张图片也对于一个标签)。类别之间相互独立,不存在重叠的部分。使用以下代码完成数据集导入:

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

 

二、探索集数据,并进行数据预处理

将测试集的前 30 张图片和类名打印出来

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(30):
    plt.subplot(5,6,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 由于 CIFAR 的标签是 array, 因此需要额外的索引(index)。
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

打印出来的效果是这样的: 

数据集预处理

下面进行数据集预处理,将像素的值标准化至0到1的区间内:

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

为什么是除以255呢?由于图片的像素范围是0~255,我们把它变成0~1的范围,于是每张图像(训练集、测试集)都除以255。

 

三、构建模型

常见卷积神经网络(CNN),主要由几个 卷积层Conv2D 和 池化层MaxPooling2D 层组成。卷积层池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。

1)特征提取——卷积层池化层

CNN 的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。通常图像使用 RGB 色彩模式,color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道,即:image_height 和 image_width 根据图像的像素高度、宽度决定;color_channels是3,对应RGB的3通道。

CIFAR 数据集中的图片,形状是 (32, 32, 3),我们可以在声明第一层时将形状赋值给参数 input_shape 。

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

查看一下网络模型:tf.keras.utils.plot_model(model) 

在上面的模型种每个 Conv2D 和 MaxPooling2D 层的输出都是一个三维的张量 (Tensor),其形状描述了 (height, width, channels)。越深的层中,宽度和高度都会收缩。

 

2)实现分类——全连接层

Dense 层等同于全连接 (Full Connected) 层,通过上面的卷积层和池化层,我们已经提取到图像的特征了,下面通过搭建Dense 层实现分类。

Dense 层的输入为向量(一维),但前面层的输出是3维的张量 (Tensor) 即:(4, 4, 64)。因此您需要将三维张量展开 (Flatten) 到1维,之后再传入一个或多个 Dense 层。

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

CIFAR 数据集有 10 个类,因此您最终的 Dense 层需要 10 个输出及一个 softmax 激活函数。

查看完整的 CNN 结构:tf.keras.utils.plot_model(model) 

或者用这样方式看看:model.summary()

可以看出,在被传入两个 Dense 层之前,通过Flatten层处理后,形状为 (4, 4, 64) 的输出被展平成了形状为 (1024) 的向量。

 

3)编译模型

主要是为模型选择损失函数loss、优化器 optimizer、衡量指标metrics(通常用准确度accuracy 来衡量的)

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

 

四、训练模型

这里我们输入准备好的训练集数据(包括图像、对应的标签),测试集的数据(包括图像、对应的标签),模型一共训练10次

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

下图是训练过程的截图:

通常loss越小越好,对了解释下什么是loss;简单来说是 模型预测值 和 真实值 的相差的值,反映模型预测的结果和真实值的相差程度;

通常准确度accuracy 越高,模型效果越好。

 

评估模型

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print("测试集的准确度", test_acc)

看看效果:

 

五、使用模型

通常使用 model.predict( )  函数进行预测。

 

完成代码:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 导入 CIFAR10 数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# 将测试集的前 30 张图片和类名打印出来
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(30):
    plt.subplot(5,6,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 由于 CIFAR 的标签是 array, 因此需要额外的索引(index)。
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

# 下面进行数据集预处理,将像素的值标准化至0到1的区间内:
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建模型
# 1)特征提取——卷积层与池化层
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# 2)实现分类——全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
# 3)编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

# 评估模型
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print("测试集的准确度", test_acc)

 

参考:一篇文章“简单”认识《卷积神经网络》(更新版)

https://tensorflow.google.cn/tutorials/images/cnn

 


点击全文阅读


本文链接:http://zhangshiyu.com/post/21940.html

模型  卷积  数据  
<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1