当前位置:首页 » 《我的小黑屋》 » 正文

The client socket has failed to connect to X (errno: 99 - Cannot assign requested address).

14 人参与  2024年04月21日 15:24  分类 : 《我的小黑屋》  评论

点击全文阅读


在跑DDP模型时遇到了如下问题.
[W socket.cpp:558] [c10d] The client socket has failed to connect to [localhost]:12355 (errno: 99 - Cannot assign requested address).
测试用的代码如下:

from datetime import datetimeimport argparseimport torchvisionimport torchvision.transforms as transformsimport torchimport torch.nn as nnimport torch.distributed as distfrom tqdm import tqdmimport torch.multiprocessing as mpimport os# TCP模式启动很好理解,需要在bash中独立的启动每一个进程,并为每个进程分配好其rank序号。缺点是当进程数多的时候启动比较麻烦。class ConvNet(nn.Module):    def __init__(self, num_classes=10):        super(ConvNet, self).__init__()        self.layer1 = nn.Sequential(            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),            nn.BatchNorm2d(16),            nn.ReLU(),            nn.MaxPool2d(kernel_size=2, stride=2))        self.layer2 = nn.Sequential(            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),            nn.BatchNorm2d(32),            nn.ReLU(),            nn.MaxPool2d(kernel_size=2, stride=2))        self.fc = nn.Linear(7 * 7 * 32, num_classes)    def forward(self, x):        out = self.layer1(x)        out = self.layer2(out)        out = out.reshape(out.size(0), -1)        out = self.fc(out)        return outdef train(gpu, args):    # ---------------------------- 改动之处1  DDP的初始化----------------------------    os.environ['MASTER_ADDR'] = args.master_addr    os.environ['MASTER_PORT'] = args.master_port    # dist.init_process_group(backend='nccl', init_method=args.init_method, rank=gpu, world_size=args.world_size)    dist.init_process_group(backend='nccl', rank=gpu, world_size=args.world_size)    # ------------------------------------------------------------------------------    model = ConvNet()    model.cuda(gpu)    # ---------------------------- 改动之处2  包装模型-------------------------------    model = nn.SyncBatchNorm.convert_sync_batchnorm(model)  # 转换为同步BN层    model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])  # 包装模型    # ------------------------------------------------------------------------------    criterion = nn.CrossEntropyLoss().to(gpu)    optimizer = torch.optim.SGD(model.parameters(), 1e-4)    train_dataset = torchvision.datasets.MNIST(root='./data',                                               train=True,                                               transform=transforms.ToTensor(),                                               download=True)    # --------------------------- 改动之处3  Sampler的使用----------------------------    train_sampler = torch.utils.data.distributed.DistributedSampler(        train_dataset)  # , num_replicas=args.world_size, rank=gpu)    # -------------------------------------------------------------------------------    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,                                               batch_size=args.batch_size,                                               shuffle=False,  # 这里的shuffle变为了False                                               num_workers=2,                                               pin_memory=True,                                               sampler=train_sampler)    start = datetime.now()    total_step = len(train_loader)    for epoch in range(args.epochs):        # -------------------------- 改动之处4  在每个epoch开始前打乱数据顺序-------------------------        train_loader.sampler.set_epoch(epoch)        # ------------------------------------------------------------------------------------------        model.train()        for i, (images, labels) in enumerate(tqdm(train_loader)):            images = images.to(gpu)            labels = labels.to(gpu)            # ---------------- 改动之处5  控制前向过程中是否使用半精度计算,可不加-------------------------            with torch.cuda.amp.autocast(enabled=args.use_mix_precision):                outputs = model(images)                loss = criterion(outputs, labels)            # ------------------------------------------------------------------------------------------            optimizer.zero_grad()            loss.backward()            optimizer.step()            # ----------------------- 改动之处6  只让rank0进程打印输出结果-----------------------------            if (i + 1) % 1000 == 0 and gpu == 0:                print(f'Epoch [{epoch + 1}/{args.epochs}], Step [{i + 1}/{total_step}], Loss: {loss.item()}')            # ----------------------------------------------------------------------------------------    # ----------------------- 改动之处7  清理进程--------------------------------    dist.destroy_process_group()    if gpu == 0:        print("Training complete in: " + str(datetime.now() - start))    # --------------------------------------------------------------------------def main():    parser = argparse.ArgumentParser()    parser.add_argument('-g', '--gpuid', default=0, type=int,                        help="which gpu to use")    parser.add_argument('-e', '--epochs', default=2, type=int,                        metavar='N',                        help='number of total epochs to run')    parser.add_argument('-b', '--batch_size', default=4, type=int,                        metavar='N',                        help='number of batchsize')    # ------------------------------- 改动之处 ---------------------------------    parser.add_argument('--master_addr', default='localhost',                        help='master address')    parser.add_argument('--master_port', default='12355',                        help='master port')    # parser.add_argument('-r', '--rank', default=0, type=int,    #                     help='rank of current process')    parser.add_argument('--world_size', default=2, type=int,                        help="world size")    parser.add_argument('--use_mix_precision', default=False,  # 这个不加也没事                        action='store_true', help="whether to use mix precision")    # ------------------------------------------------------------------------------    args = parser.parse_args()    # train(args.gpuid, args)    mp.spawn(train, nprocs=args.world_size, args=(args,))if __name__ == '__main__':    main()# 运行方法:直接run

上述代码直接运行会报上述的问题,但是好像不会影响运行(?)
一开始我还以为是端口被占用了,经过检查发现并没有问题,猜测可能是多线程运行导致程序出了问题
同时我发现在如下地方加入一行print()代码就不会报这个错误。

def train(gpu, args):print("test")  # 随便打印什么都行    # ---------------------------- 改动之处1  DDP的初始化----------------------------    os.environ['MASTER_ADDR'] = args.master_addr    os.environ['MASTER_PORT'] = args.master_port    # dist.init_process_group(backend='nccl', init_method=args.init_method, rank=gpu, world_size=args.world_size)    dist.init_process_group(backend='nccl', rank=gpu, world_size=args.world_size)

更新

好像不大对,加上这个打印有时候也会报错,但是报错频率明显下降,好怪,重新思考一下这个问题

def train(gpu, args):    # ---------------------------- 改动之处1  DDP的初始化----------------------------    print(f"{gpu} 11111")    os.environ['MASTER_ADDR'] = args.master_addr    os.environ['MASTER_PORT'] = args.master_port    # os.environ['MASTER_ADDR'] = "localhost"    # os.environ['MASTER_PORT'] = "12355"    # dist.init_process_group(backend='nccl', init_method=args.init_method, rank=gpu, world_size=args.world_size)    print(f"{gpu} 22222")    # time.sleep(3)    dist.init_process_group(backend='nccl', rank=gpu, world_size=args.world_size)    print(f"{gpu} 33333")

加上GPU的编号(实验环境是双卡),发现这种情况下会正常运行,也就是说GPU0先启动
这种情况下会正常运行,也就是说GPU0先启动
出现这种情况,当GPU1先启动时,就会报这个错误,那我们的目标就是让线程1晚点启动
2
思路已经明确了,让0号线程先于1号线程启动

def train(gpu, args):    # ---------------------------- 改动之处1  DDP的初始化----------------------------    # 让线程1先休眠1秒,确保线程0先启动    if gpu == 1:        time.sleep(1)    print(f"{gpu} 11111")    os.environ['MASTER_ADDR'] = args.master_addr    os.environ['MASTER_PORT'] = args.master_port    # os.environ['MASTER_ADDR'] = "localhost"    # os.environ['MASTER_PORT'] = "12355"    # dist.init_process_group(backend='nccl', init_method=args.init_method, rank=gpu, world_size=args.world_size)    print(f"{gpu} 22222")    # time.sleep(3)    dist.init_process_group(backend='nccl', rank=gpu, world_size=args.world_size)    print(f"{gpu} 33333")

问题得以解决,但是中间原理貌似不是很明白


点击全文阅读


本文链接:http://zhangshiyu.com/post/98372.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1