顾得泉:个人主页
个人专栏:《Linux操作系统》 《C++从入门到精通》 《LeedCode刷题》
键盘敲烂,年薪百万!
一、AVL树的概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
1.它的左右子树都是AVL树
2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在(log_2 n),搜索时间复杂度O(log_2 n)。
二、AVL树的旋转
如果在一颗原本平衡的AVL树插入新节点后,平衡因子可能会发生变化,从而使绝对值大于1,所以就需要旋转去调整树的结构,使之平衡化,而根据节点的不同,旋转就有4中情况。
1.左单旋
实现图解:
代码实现:
void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* parentParent = parent->_parent;parent->_parent = subR;if (subRL)subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}
2.右单旋
实现图解:
代码实现:
void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}subL->_bf = parent->_bf = 0;}
3.左右双旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
实现图解:
代码实现:
void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){// subLR自己就是新增parent->_bf = subL->_bf = subLR->_bf = 0;}else if (bf == -1){// subLR的右子树新增parent->_bf = 0;subLR->_bf = 0;subL->_bf = 1;}else if (bf == 1){// subRL的左子树新增parent->_bf = -1;subLR->_bf = 0;subL->_bf = 0;}else{assert(false);}}
4.右左双旋
具体实现参考左右双旋。
实现图解:
代码实现:
void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){// subRL自己就是新增parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == -1){// subRL的左子树新增parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;}else if (bf == 1){// subRL的右子树新增parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;}else{assert(false);}}
5.旋转总结
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
三、AVL树的基本实现
1.AVL树的节点实现
template<class K, class V>struct AVLTreeNode{ AVLTreeNode<K, V>* _left; AVLTreeNode<K, V>* _right; AVLTreeNode<K, V>* _parent; pair<K, V> _kv; int _bf; // balance factor AVLTreeNode(const pair<K, V>& kv) :_left(nullptr) , _right(nullptr) , _parent(nullptr) , _kv(kv) , _bf(0) {}};
2.AVL树的插入实现
class AVLTree{ typedef AVLTreeNode<K, V> Node;public: bool Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else { return false; } } cur = new Node(kv); if (parent->_kv.first < kv.first) { parent->_right = cur; cur->_parent = parent; } else { parent->_left = cur; cur->_parent = parent; } while (parent) { if (cur == parent->_left) { parent->_bf--; } else { parent->_bf++; } if (parent->_bf == 0) { break; } else if (parent->_bf == 1 || parent->_bf == -1) { cur = parent; parent = parent->_parent; } else if (parent->_bf == 2 || parent->_bf == -2) { if (parent->_bf == 2 && cur->_bf == 1) { RotateL(parent); } else if (parent->_bf == -2 && cur->_bf == -1) { RotateR(parent); } else if (parent->_bf == 2 && cur->_bf == -1) { RotateRL(parent); } else if (parent->_bf == -2 && cur->_bf == 1) { RotateLR(parent); } // 1、旋转让这颗子树平衡了 // 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新 break; } else { assert(false); } } return true; }private: Node* _root=nullptr;};
四、AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2n。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
预告:AVL树固然nb,但是红黑树更强!如果说发明AVL树的人是周瑜,那么发明红黑树的人就是诸葛亮。下篇文章带你学习红黑树。
结语:C++关于如何实现AVL树的分享到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~