当前位置:首页 » 《随便一记》 » 正文

【深度学习】在虚拟机Ubuntu中安装Anaconda+pycharm+跑通YOLOv8项目源代码+训练自己的数据集

14 人参与  2024年03月09日 19:16  分类 : 《随便一记》  评论

点击全文阅读


因为一些特殊的原因,需要从之前CPU的win跑代码转移到GPU的虚拟机Ubuntu里面去跑,故在此记录一下安装软件和搭建环境的一些步骤,码一下以便以后查看。

文章目录

1.安装Anaconda1.1下载Anaconda安装包1.2安装Anaconda 2.使用Anaconda搭建环境3.安装pycahrm3.1下载pycharm3.2添加环境3.3添加pycharm的图标 4.跑通YOLOv8项目5.训练自己的数据集结束语


因为虚拟机提前安装了英伟达驱动,在此就不赘述驱动程序的安装了。
ps:
如果在终端输入

nvidia-smi

显示以下即为驱动程序已安装
在这里插入图片描述
如果是以下即为未安装驱动程序(图为网上查找的)
在这里插入图片描述
安装Anaconda+pycharm整体流程是借鉴小白菜的笔记(笔记)ubuntu20.04里安装anaconda然后在conda里安装pytorch这篇文章。

1.安装Anaconda

1.1下载Anaconda安装包

安装Anaconda的详细过程借鉴萝北村的枫子的文章Ubuntu安装Anaconda详细步骤(Ubuntu22.04.1,Anaconda3-2023.03)
进入Anaconda官网:https://repo.anaconda.com/archive/
我下载的是2021.11_Linux_x86
在这里插入图片描述
将下载中的文件移动到新创建的文件夹anaconda中
在这里插入图片描述

1.2安装Anaconda

点击空白处,选择终端打开
在这里插入图片描述
输入命令行:

bash Anaconda3-2021.11-Linux-x86_64.sh

在这里插入图片描述
输入yes,然后回车即可
在这里插入图片描述
后面会显示协议的一些内容,一直回车即可,直到显示让你输入yes
在这里插入图片描述
输入yes
选择默认的安装目录(默认在用户主目录下创建一个名为anaconda3的文件夹作为安装地址),等待安装完成
注意:此处默认安装的路径直接回车即可,不要输入新的地址,我刚开始以为跟着输入yes,结果就是安装到新创建的yes这个文件夹,后面打开的时候就有bug,然后重新安装了一遍,第二个>>> 直接回车不要输入
在这里插入图片描述
输入yes
在这里插入图片描述
安装完成
在这里插入图片描述
进入安装文件右击,终端打开,输入conda list即可看到已安装的anaconda
在这里插入图片描述
安装完成后,之前建立的anaconda文件夹及安装包删除即可。

2.使用Anaconda搭建环境

创建环境的详细步骤在我之前的笔记中有写,此处不再赘述,可以参考:【深度学习】使用GPU(CUDA)跑通YOLOv5源码,包含搭建环境+训练数据集+预测(整套流程)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
慢慢等待安装即可。
在这里插入图片描述
安装完成后可以通过以下命令进行查看是否安装成功

import torch                           import torchvision                          print(torch.cuda.is_available())            print(torch.backends.cudnn.is_available()) print(torch.version.cuda)                  print(torch.backends.cudnn.version())      

在这里插入图片描述
tips: 我发现安装anaconda后,打开终端都会有前面的(base),强迫症想取消掉,然后找了解决方法:
在这里插入图片描述
以后如果想进入某环境,直接使用conda avtivate命令进入即可。
在这里插入图片描述
至此,anaconda安装完成+python虚拟环境搭建完成。

3.安装pycahrm

3.1下载pycharm

进入官网:https://www.jetbrains.com/pycharm/download/?section=linux#section=linux
下载压缩包,我下载的是社区版就够用了。下载后我新建了一个pycharm的文件夹,将压缩包解压到此。
在这里插入图片描述
在这里插入图片描述
在命令行输入:

cd pycharm-community-2022.2.4/bin/./pycharm.sh

在这里插入图片描述

3.2添加环境

点击pycharm界面的右下角添加解释器
在这里插入图片描述
在这里插入图片描述

3.3添加pycharm的图标

此处借鉴的是
炼丹炼丹的文章Ubuntu系统下设置桌面图标快捷方式(以Pycharm为例)
添加桌面图标可以直接点击图标就进入应用,不用再使用命令行进入
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第五行就是应用打开的所在位置,第六行是图标所在位置
在这里插入图片描述
在这里插入图片描述

4.跑通YOLOv8项目

去官网下载YOLOv8源码以及预训练权重,我下载的是YOLOV8s.pt:https://github.com/ultralytics/ultralytics
下载完成后使用pycharm打开项目
安装依赖:
在这里插入图片描述
YOLOv8好像还要安装一个ultralytics包

pip install ultralytics

将下载的权重放在根目录下即可
在这里插入图片描述
验证环境配置是否能够成功跑通项目:

yolo predict model=yolov8s.pt source='ultralytics/assets/bus.jpg'

在这里插入图片描述
成功跑通:
在这里插入图片描述
在这里插入图片描述

5.训练自己的数据集

此处指简略的写一些流程,详细可以参考我的上一篇文章:
【深度学习】使用GPU(CUDA)跑通YOLOv5源码,包含搭建环境+训练数据集+预测(整套流程)
我是将自己的数据集放入根目录下的own_datas文件夹中,训练集验证集如图所示。需要自己编写一个own_datas.yaml

在这里插入图片描述
own_datas.yaml就是写清数据集所在位置,以及数据集中的类,以及分别的标签是啥。

在这里插入图片描述
使用命令行进行开始训练

在这里插入图片描述
此处贴一下命令行的格式:

在这里插入图片描述
训练完成后,会在项目根目录下的runs文件夹中找到训练结果。

在这里插入图片描述

结束语

浅浅记录自己在虚拟机Ubuntu中安装Anaconda和pycharm的全过程,以及跑通YOLOv8项目+训练自己的数据集的全过程。


点击全文阅读


本文链接:http://zhangshiyu.com/post/76703.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1