当前位置:首页 » 《随便一记》 » 正文

涨点技巧:Detect系列---Yolov5/Yolov7加入ASFF特征金字塔融合方法,涨点明显

13 人参与  2023年04月04日 16:52  分类 : 《随便一记》  评论

点击全文阅读


目录

 

1.ASFF介绍

 2.ASFF加入Yolov5提升检测精度

2.1 ASFF加入common.py中:

2.2 ASFF加入yolo.py中: 

2.3 修改yolov5s_asff.yaml

2.4 与cbam结合 进一步提升检测精度


1.ASFF介绍

 Learning Spatial Fusion for Single-Shot Object Detection

论文地址:https://arxiv.org/pdf/1911.09516v2.pdf

     多尺度特征特别是特征金字塔FPN是解决目标检测中跨尺度目标的最常用有效的解决方法,但是不同特征尺度中存在的不一致性限制了(基于特征金字塔的)single-shot检测器的性能。本文提出一种特征金字塔融合方法ASFF,它自动学习去抑制不同尺度特征在融合时空间上可能存在不一致;

 2.ASFF加入Yolov5提升检测精度

2.1 ASFF加入common.py中:

class ASFFV5(nn.Module):    def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):        """        ASFF version for YoloV5 .        different than YoloV3        multiplier should be 1, 0.5        which means, the channel of ASFF can be        512, 256, 128 -> multiplier=1        256, 128, 64 -> multiplier=0.5        For even smaller, you need change code manually.        """        super(ASFFV5, self).__init__()        self.level = level        self.dim = [int(1024 * multiplier), int(512 * multiplier),                    int(256 * multiplier)]        # print(self.dim)        self.inter_dim = self.dim[self.level]        if level == 0:            self.stride_level_1 = Conv(int(512 * multiplier), self.inter_dim, 3, 2)            self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)            self.expand = Conv(self.inter_dim, int(                1024 * multiplier), 3, 1)        elif level == 1:            self.compress_level_0 = Conv(                int(1024 * multiplier), self.inter_dim, 1, 1)            self.stride_level_2 = Conv(                int(256 * multiplier), self.inter_dim, 3, 2)            self.expand = Conv(self.inter_dim, int(512 * multiplier), 3, 1)        elif level == 2:            self.compress_level_0 = Conv(                int(1024 * multiplier), self.inter_dim, 1, 1)            self.compress_level_1 = Conv(                int(512 * multiplier), self.inter_dim, 1, 1)            self.expand = Conv(self.inter_dim, int(                256 * multiplier), 3, 1)        # when adding rfb, we use half number of channels to save memory        compress_c = 8 if rfb else 16        self.weight_level_0 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_level_1 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_level_2 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_levels = Conv(            compress_c * 3, 3, 1, 1)        self.vis = vis    def forward(self, x):  # l,m,s        """        # 128, 256, 512        512, 256, 128        from small -> large        """        x_level_0 = x[2]  # l        x_level_1 = x[1]  # m        x_level_2 = x[0]  # s        # print('x_level_0: ', x_level_0.shape)        # print('x_level_1: ', x_level_1.shape)        # print('x_level_2: ', x_level_2.shape)        if self.level == 0:            level_0_resized = x_level_0            level_1_resized = self.stride_level_1(x_level_1)            level_2_downsampled_inter = F.max_pool2d(                x_level_2, 3, stride=2, padding=1)            level_2_resized = self.stride_level_2(level_2_downsampled_inter)        elif self.level == 1:            level_0_compressed = self.compress_level_0(x_level_0)            level_0_resized = F.interpolate(                level_0_compressed, scale_factor=2, mode='nearest')            level_1_resized = x_level_1            level_2_resized = self.stride_level_2(x_level_2)        elif self.level == 2:            level_0_compressed = self.compress_level_0(x_level_0)            level_0_resized = F.interpolate(                level_0_compressed, scale_factor=4, mode='nearest')            x_level_1_compressed = self.compress_level_1(x_level_1)            level_1_resized = F.interpolate(                x_level_1_compressed, scale_factor=2, mode='nearest')            level_2_resized = x_level_2        # print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,        #      level_1_resized.shape, level_2_resized.shape))        level_0_weight_v = self.weight_level_0(level_0_resized)        level_1_weight_v = self.weight_level_1(level_1_resized)        level_2_weight_v = self.weight_level_2(level_2_resized)        # print('level_0_weight_v: ', level_0_weight_v.shape)        # print('level_1_weight_v: ', level_1_weight_v.shape)        # print('level_2_weight_v: ', level_2_weight_v.shape)        levels_weight_v = torch.cat(            (level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)        levels_weight = self.weight_levels(levels_weight_v)        levels_weight = F.softmax(levels_weight, dim=1)        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] + \                            level_1_resized * levels_weight[:, 1:2, :, :] + \                            level_2_resized * levels_weight[:, 2:, :, :]        out = self.expand(fused_out_reduced)        if self.vis:            return out, levels_weight, fused_out_reduced.sum(dim=1)        else:            return out# ------------------------------------asff -----end--------------------------------

2.2 ASFF加入yolo.py中: 

class ASFF_Detect(nn.Module):  # add ASFFV5 layer and Rfb    stride = None  # strides computed during build    onnx_dynamic = False  # ONNX export parameter    export = False  # export mode    def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True):  # detection layer        super().__init__()        self.nc = nc  # number of classes        self.no = nc + 5  # number of outputs per anchor        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.grid = [torch.zeros(1)] * self.nl  # init grid        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv        self.inplace = inplace  # use in-place ops (e.g. slice assignment)    def forward(self, x):        z = []  # inference output        result = []        result.append(self.l2_fusion(x))        result.append(self.l1_fusion(x))        result.append(self.l0_fusion(x))        x = result        for i in range(self.nl):            x[i] = self.m[i](x[i])  # conv            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()            if not self.training:  # inference                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                y = x[i].sigmoid()                if self.inplace:                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh                    y = torch.cat((xy, wh, conf), 4)                z.append(y.view(bs, -1, self.no))        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):        d = self.anchors[i].device        t = self.anchors[i].dtype        shape = 1, self.na, ny, nx, 2  # grid shape        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)        if torch_1_10:  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility            yv, xv = torch.meshgrid(y, x, indexing='ij')        else:            yv, xv = torch.meshgrid(y, x)        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)        # print(anchor_grid)        return grid, anchor_grid

class DetectionModel(BaseModel):下加入  (PS:建议直接搜索Detect关键词)

 m = self.model[-1]  # Detect()        if isinstance(m, (Detect, Segment,ASFF_Detect)):

def parse_model(d, ch):  # model_dict, input_channels(3)

# TODO: channel, gw, gd        elif m in {Detect, Segment,ASFF_Detect}:            args.append([ch[x] for x in f])

class BaseModel(nn.Module):

    def _apply(self, fn):        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers        self = super()._apply(fn)        m = self.model[-1]  # Detect()        if isinstance(m, (Detect, Segment,ASFF_Detect)):

2.3 修改yolov5s_asff.yaml

# YOLOv5 ? by Ultralytics, GPL-3.0 license# Parametersnc: 1  # number of classesdepth_multiple: 0.33  # model depth multiplewidth_multiple: 0.50  # layer channel multipleanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 6, C3, [256]],   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 3, C3, [1024]],   [-1, 1, SPPF, [1024, 5]],  # 9  ]# YOLOv5 v6.0 headhead:  [[-1, 1, Conv, [512, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 13   [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 3, 2]],   [[-1, 14], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)   [-1, 1, Conv, [512, 3, 2]],   [[-1, 10], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)   [[17, 20, 23], 1, ASFF_Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]

2.4 与cbam结合 进一步提升检测精度

cbam介绍:https://blog.csdn.net/m0_63774211/article/details/129611391

# Parametersnc: 1   # number of classesdepth_multiple: 0.67  # model depth multiplewidth_multiple: 0.75  # layer channel multiple# anchorsanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 6, C3, [256]],   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 3, C3, [1024]],   [-1, 1, CBAM, [1024]], #9   [-1, 1, SPPF, [1024, 5]],  #10  ]# YOLOv5 v6.0 headhead:  [[-1, 1, Conv, [512, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 14   [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)   [-1, 1, CBAM, [256]],   #19   [-1, 1, Conv, [256, 3, 2]],   [[-1, 14], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [512, False]],  # 22 (P4/16-medium)   [-1, 1, CBAM, [512]],   [-1, 1, Conv, [512, 3, 2]],   [[-1, 10], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 25 (P5/32-large)   [-1, 1, CBAM, [1024]],   [[19, 23, 27], 1, ASFF_Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]


点击全文阅读


本文链接:http://zhangshiyu.com/post/58326.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1