K均值算法(K-means)聚类
一、K-means算法原理
聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中。
K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法
这个算法其实很简单,如下图所示:
从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。
然后,K-Means的算法如下:
随机在图中取K(这里K=2)个种子点。然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。这个算法很简单,重点说一下“求点群中心的算法”:欧氏距离(Euclidean Distance):差的平方和的平方根
K-Means主要最重大的缺陷——都和初始值有关:
K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)
K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)
总结:K-Means算法步骤:
从数据中选择k个对象作为初始聚类中心;计算每个聚类对象到聚类中心的距离来划分;再次计算每个聚类中心计算标准测度函数,直到达到最大迭代次数,则停止,否则,继续操作。确定最优的聚类中心二、实战
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline
1、聚类实例
导包,使用make_blobs生成随机点
from sklearn.datasets import make_blobsfrom sklearn.datasets import make_blobsdata,target = make_blobs()plt.scatter(data[:,0],data[:,1],c=target)
建立模型,训练数据,并进行数据预测,使用相同数据
无监督的情况下进行计算,预测 现在机器学习没有目标
from sklearn.cluster import KMeans, DBSCAN# cluster : 聚类from sklearn.cluster import KMeans, DBSCAN# 创建# n_clusters=8 : 默认8个组(簇),k = 8kmeans = KMeans(n_clusters=4)# 训练# 聚类算法:不需要提供 targetkmeans.fit(data)
labels_ : 每个样本点的标签
kmeans.labels_'''array([3, 3, 2, 0, 2, 0, 2, 2, 1, 3, 2, 3, 3, 1, 1, 2, 2, 0, 3, 3, 3, 1, 1, 2, 1, 2, 0, 3, 1, 3, 3, 1, 2, 3, 2, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 1, 3, 3, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 3, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2, 1, 2, 3, 3, 3, 3, 2, 3, 0, 1, 2, 2])'''plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)
重要参数:
n_clusters:聚类的个数重要属性:
cluster_centers_ : [n_clusters, n_features]的数组,表示聚类中心点的坐标labels_ : 每个样本点的标签# 分组的个数kmeans.n_clusters# 4# 聚类中心kmeans.cluster_centers_'''array([[-4.46626315, -8.14085978], [ 1.44224349, 4.81770399], [-7.01852833, -6.6710513 ], [-3.74353854, -6.23186778]])'''
绘制图形中心点,显示聚类结果kmeans.cluster_centers
plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)# 话聚类中心plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],c='r',s=100)
2、 实战,三问中国足球几多愁?
读取数据
football = pd.read_csv('../data/AsiaFootball.txt',header=None)football
列名修改为:"国家","2006世界杯","2010世界杯","2007亚洲杯"
football.columns = ["国家","2006世界杯","2010世界杯","2007亚洲杯"]football
data = football.iloc[:,1:].copy()
使用K-Means进行数据处理,对亚洲球队进行分组,分三组
kmeans = KMeans(n_clusters=3)kmeans.fit(data)# labelskmeans.labels_# array([0, 1, 1, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0])country = football['国家'].valuescountry'''array(['中国', '日本', '韩国', '伊朗', '沙特', '伊拉克', '卡塔尔', '阿联酋', '乌兹别克斯坦', '泰国', '越南', '阿曼', '巴林', '朝鲜', '印尼'], dtype=object)'''
for循环打印输出分组后的球队
0 == kmeans.labels_'''array([ True, False, False, False, False, True, True, True, False, True, True, True, False, False, True])'''country[0 == kmeans.labels_]'''array(['中国', '伊拉克', '卡塔尔', '阿联酋', '泰国', '越南', '阿曼', '印尼'], dtype=object)'''for i in range(3): print(country[i == kmeans.labels_])'''['中国' '伊拉克' '卡塔尔' '阿联酋' '泰国' '越南' '阿曼' '印尼']['日本' '韩国']['伊朗' '沙特' '乌兹别克斯坦' '巴林' '朝鲜']'''
3、K-Means图片颜色点分类
from sklearn.datasets import load_sample_imageload_sample_image()from sklearn.datasets import load_sample_imagechina = load_sample_image('china.jpg')plt.imshow(china)
flower = load_sample_image('flower.jpg')plt.imshow(flower)
china'''array([[[174, 201, 231], [174, 201, 231], [174, 201, 231], ..., [250, 251, 255], [250, 251, 255], [250, 251, 255]], [[172, 199, 229], [173, 200, 230], [173, 200, 230], ..., [251, 252, 255], [251, 252, 255], [251, 252, 255]], [[174, 201, 231], [174, 201, 231], [174, 201, 231], ..., [252, 253, 255], [252, 253, 255], [252, 253, 255]], ..., [[ 88, 80, 7], [147, 138, 69], [122, 116, 38], ..., [ 39, 42, 33], [ 8, 14, 2], [ 6, 12, 0]], [[122, 112, 41], [129, 120, 53], [118, 112, 36], ..., [ 9, 12, 3], [ 9, 15, 3], [ 16, 24, 9]], [[116, 103, 35], [104, 93, 31], [108, 102, 28], ..., [ 43, 49, 39], [ 13, 21, 6], [ 15, 24, 7]]], dtype=uint8)'''china.shape# (427, 640, 3)
保留主要的颜色,使用聚类成64种
kmeans = KMeans(64)kmeans.fit(data)kmeans = KMeans(64)# %time kmeans.fit(china.reshape(-1,3))# 计算量较大,速度很慢
随机获取1000个图片中的颜色, 进行训练
data = china.reshape(-1,3)data.shape# (273280, 3)# pd.DataFrame(data).sample(1000)from sklearn.utils import shuffle# 先打乱顺序,然后取1000个data2= data.copy()data3 = shuffle(data2)[:1000]data3'''array([[248, 249, 254], [ 63, 80, 36], [235, 243, 254], ..., [ 15, 26, 9], [101, 102, 94], [ 94, 104, 67]], dtype=uint8)'''data3.shape# (1000, 3)
使用KMeans进行聚类
kmeans = KMeans(64)# 训练kmeans.fit(data3)#labelslabels = kmeans.labels_labels'''array([40, 58, 37, 10, 36, 28, 5, 55, 40, 58, 48, 38, 4, 14, 47, 14, 1, 15, 29, 56, 49, 35, 19, 17, 14, 36, 47, 33, 49, 2, 62, 17, 40, 47, 40, 37, 40, 17, 17, 24, 57, 10, 28, 14, 55, 0, 14, 13, 34, 35, 3, 17, 36, 3, 58, 44, 17, 57, 35, 40, 14, 56, 17, 10, 30, 4, 6, 23, 31, 0, 43, 30, 36, 39, 35, 11, 55, 11, 11, 37, 40, 35, 48, 19, 17, 63, 16, 1, 47, 58, 5, 10, 36, 30, 63, 6, 0, 4, 24, 3, 41, 47, 3, 0, 46, 8, 31, 49, 38, 37, 36, 55, 27, 57, 6, 14, 0, 5, 50, 55, 4, 28, 23, 14, 49, 17, 5, 7, 52, 37, 24, 23, 49, 46, 9, 17, 39, 42, 14, 58, 0, 6, 37, 7, 14, 17, 19, 51, 14, 45, 5, 55, 10, 49, 0, 50, 13, 38, 17, 10, 49, 13, 44, 58, 6, 3, 45, 9, 0, 52, 40, 17, 58, 0, 14, 30, 63, 57, 35, 35, 0, 41, 11, 40, 10, 22, 50, 47, 47, 10, 17, 51, 32, 3, 37, 7, 38, 14, 63, 37, 40, 35, 40, 52, 0, 11, 28, 17, 54, 31, 37, 52, 63, 35, 14, 5, 9, 47, 10, 11, 17, 17, 5, 11, 49, 6, 2, 10, 46, 0, 55, 40, 10, 52, 37, 49, 14, 35, 30, 37, 52, 4, 9, 3, 52, 48, 24, 7, 25, 56, 13, 29, 12, 48, 49, 0, 48, 35, 35, 0, 49, 41, 44, 19, 5, 10, 20, 47, 32, 0, 41, 47, 39, 28, 34, 5, 26, 40, 17, 28, 58, 37, 8, 19, 42, 40, 37, 24, 31, 56, 37, 6, 42, 59, 29, 47, 37, 63, 58, 34, 37, 16, 29, 41, 17, 44, 47, 58, 51, 17, 3, 4, 0, 10, 44, 57, 14, 36, 4, 24, 30, 5, 37, 30, 34, 11, 8, 0, 17, 51, 7, 34, 37, 19, 6, 4, 24, 63, 50, 40, 2, 0, 37, 26, 36, 28, 34, 2, 39, 47, 16, 26, 32, 10, 2, 40, 6, 39, 8, 37, 17, 43, 11, 28, 41, 7, 13, 35, 38, 49, 50, 50, 4, 31, 53, 40, 43, 39, 53, 3, 48, 0, 37, 24, 62, 55, 6, 3, 28, 55, 41, 31, 27, 10, 46, 0, 14, 1, 40, 34, 0, 14, 20, 56, 63, 40, 11, 0, 2, 0, 33, 55, 3, 63, 37, 49, 10, 49, 35, 32, 35, 4, 46, 30, 14, 28, 17, 13, 37, 37, 35, 43, 13, 35, 60, 29, 60, 7, 63, 50, 10, 35, 24, 11, 55, 55, 11, 56, 16, 42, 24, 31, 17, 11, 63, 14, 16, 37, 29, 47, 43, 41, 35, 52, 37, 38, 58, 14, 63, 47, 3, 39, 6, 34, 41, 30, 51, 55, 46, 3, 10, 4, 5, 63, 14, 0, 5, 47, 40, 2, 47, 58, 17, 38, 33, 38, 34, 2, 49, 17, 37, 63, 35, 35, 63, 7, 45, 28, 60, 0, 51, 35, 14, 5, 48, 14, 40, 47, 52, 58, 35, 57, 56, 62, 40, 17, 5, 21, 0, 55, 1, 63, 56, 14, 28, 5, 28, 0, 2, 61, 33, 5, 38, 35, 17, 3, 51, 14, 17, 6, 56, 9, 0, 24, 55, 40, 44, 5, 37, 0, 10, 13, 8, 60, 5, 38, 38, 60, 28, 2, 4, 17, 40, 27, 55, 62, 7, 12, 7, 4, 51, 11, 25, 28, 5, 41, 49, 0, 50, 28, 49, 9, 5, 30, 51, 37, 6, 14, 51, 53, 0, 49, 14, 17, 20, 28, 63, 0, 22, 3, 10, 2, 35, 6, 24, 55, 40, 37, 5, 14, 40, 0, 5, 40, 47, 40, 39, 17, 0, 49, 11, 6, 33, 5, 63, 34, 31, 31, 49, 19, 41, 6, 11, 31, 37, 6, 40, 38, 27, 37, 49, 63, 21, 30, 17, 25, 33, 17, 55, 31, 51, 34, 6, 24, 51, 7, 18, 40, 40, 27, 28, 18, 48, 47, 28, 40, 1, 27, 0, 29, 14, 28, 5, 11, 10, 39, 17, 47, 55, 39, 3, 48, 17, 1, 49, 22, 14, 13, 56, 16, 29, 35, 33, 7, 34, 40, 34, 28, 0, 54, 56, 14, 37, 11, 6, 0, 63, 63, 11, 51, 3, 14, 20, 40, 2, 38, 14, 29, 48, 28, 21, 0, 11, 25, 19, 24, 34, 14, 40, 0, 35, 2, 6, 56, 55, 40, 11, 44, 55, 57, 2, 14, 58, 31, 50, 10, 63, 48, 40, 52, 34, 59, 5, 48, 17, 55, 39, 0, 10, 26, 34, 27, 47, 37, 10, 17, 5, 50, 37, 37, 49, 19, 5, 11, 6, 37, 10, 15, 19, 53, 26, 55, 17, 17, 48, 14, 14, 47, 14, 48, 49, 14, 11, 7, 24, 13, 63, 44, 10, 29, 41, 55, 28, 49, 31, 58, 11, 17, 22, 29, 2, 53, 14, 58, 38, 37, 40, 49, 63, 17, 61, 18, 31, 14, 37, 17, 6, 24, 26, 38, 5, 47, 37, 31, 3, 11, 32, 7, 51, 37, 63, 37, 40, 43, 37, 34, 55, 39, 14, 17, 28, 22, 46, 14, 14, 37, 63, 28, 9, 10, 14, 10, 37, 48, 0, 29, 37, 48, 53, 16, 44, 14, 55, 17, 55, 34, 3, 40, 40, 17, 9, 17, 11, 6, 0, 4, 3, 47, 33, 10, 45, 48, 30, 29, 56, 24, 9, 0, 0, 9, 28, 34, 37, 40, 0, 63, 6, 40, 38, 22, 22, 34, 35, 58, 11, 48, 11, 17, 37, 11, 6, 14, 4, 35, 0, 36, 28, 13, 37, 55, 14, 4, 50, 46, 0, 0, 49, 48, 14, 13, 37, 31, 48, 24, 0, 63, 14, 10, 51, 31, 40, 10, 11, 20, 10, 47, 31, 47, 8, 14, 52, 5, 4, 14, 18, 57, 63, 0, 50, 44, 47, 21, 56, 59, 54, 32, 17, 14, 5, 45, 11, 49, 6, 48, 63, 53, 45, 28, 26, 38])'''# 聚类中心centers = kmeans.cluster_centers_centers'''array([[241.42 , 246.04 , 253.34 ], [ 66.33333333, 95.66666667, 95. ], [ 49.06666667, 25. , 22.46666667], [180.7 , 191.55 , 188.2 ], [123.52941176, 111.64705882, 92.58823529], [ 47.26666667, 48.93333333, 36.6 ], [205.76923077, 226.88461538, 249.65384615], [ 84.78571429, 74.64285714, 56.64285714], [218.33333333, 175.33333333, 136.16666667], [146.8 , 156.1 , 162.3 ], [209.65625 , 209.34375 , 214.59375 ], [ 14.06451613, 13.12903226, 6.96774194], [218.5 , 119.5 , 106. ], [107.41666667, 110.08333333, 45.75 ], [186.38888889, 210.09259259, 236.55555556], [209. , 95. , 33.5 ], [111.28571429, 47.28571429, 28.14285714], [220.40816327, 236.42857143, 252.53061224], [157.5 , 128.75 , 106.75 ], [149.5 , 142. , 130.8 ], [248.6 , 169.4 , 105.8 ], [167. , 154.5 , 85.25 ], [ 33. , 68.85714286, 73. ], [ 80. , 15.33333333, 4.66666667], [ 86.38888889, 86.22222222, 32.27777778], [237.25 , 199.75 , 172.5 ], [102.57142857, 104. , 96.14285714], [172.57142857, 161.71428571, 134.28571429], [ 23.64285714, 27.14285714, 16.28571429], [170.76923077, 183.46153846, 175.07692308], [123.25 , 126.16666667, 113.91666667], [ 57.77777778, 53.94444444, 48.5 ], [170.83333333, 97.16666667, 81.5 ], [119.25 , 74.625 , 42.75 ], [193.4 , 203. , 205.35 ], [200.06896552, 211.51724138, 225.72413793], [137.66666667, 140.33333333, 81.11111111], [231.72 , 242.08 , 253.46 ], [ 99.64705882, 96.58823529, 65.64705882], [219.25 , 223.58333333, 225.83333333], [249.93181818, 250.47727273, 253.84090909], [ 75.08333333, 79.66666667, 73.66666667], [145.75 , 59.25 , 48.25 ], [193.66666667, 146.83333333, 109.33333333], [ 84.6 , 40.5 , 31.3 ], [198.83333333, 126.16666667, 85.66666667], [ 18.25 , 46.75 , 45.75 ], [ 35.67857143, 36.35714286, 26.10714286], [ 4.66666667, 3.33333333, 1.42857143], [240.03571429, 239.89285714, 241.92857143], [152.5 , 171.58333333, 181.5 ], [ 65.86666667, 69.6 , 53.66666667], [123.27272727, 119.54545455, 61.18181818], [ 50.57142857, 46.28571429, 9.28571429], [164. , 83.66666667, 57.66666667], [230.10714286, 232.53571429, 237.71428571], [ 40.42857143, 12.28571429, 11.78571429], [131.875 , 152. , 139.5 ], [ 67.47058824, 64.94117647, 23.35294118], [104. , 102.33333333, 18.66666667], [104.6 , 117.2 , 118.4 ], [165.5 , 182.5 , 100.5 ], [131.75 , 87.75 , 78.75 ], [194.43333333, 218.43333333, 244.86666667]])'''centers.shape, labels.shape# ((64, 3), (1000,))# 预测y_pred = kmeans.predict(data)y_pred.shape# (273280,)y_pred# array([14, 14, 14, ..., 5, 11, 11])
上面已经对 27万个 像素值 预测出了结果,结果的范围是0~63,共64组
接下来,我们用64个聚类中心点,分布替换每一个分组的所有像素值
plt.imshow(china)
centers.shape# (64, 3)centers[y_pred].shape# (273280, 3)# 新图new_china = centers[y_pred].reshape(427,640,3)new_china'''array([[[186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], ..., [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909]], [[186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], ..., [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909]], [[186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], [186.38888889, 210.09259259, 236.55555556], ..., [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909], [249.93181818, 250.47727273, 253.84090909]], ..., [[ 86.38888889, 86.22222222, 32.27777778], [137.66666667, 140.33333333, 81.11111111], [107.41666667, 110.08333333, 45.75 ], ..., [ 35.67857143, 36.35714286, 26.10714286], [ 14.06451613, 13.12903226, 6.96774194], [ 4.66666667, 3.33333333, 1.42857143]], [[107.41666667, 110.08333333, 45.75 ], [123.27272727, 119.54545455, 61.18181818], [107.41666667, 110.08333333, 45.75 ], ..., [ 14.06451613, 13.12903226, 6.96774194], [ 14.06451613, 13.12903226, 6.96774194], [ 23.64285714, 27.14285714, 16.28571429]], [[107.41666667, 110.08333333, 45.75 ], [104. , 102.33333333, 18.66666667], [104. , 102.33333333, 18.66666667], ..., [ 47.26666667, 48.93333333, 36.6 ], [ 14.06451613, 13.12903226, 6.96774194], [ 14.06451613, 13.12903226, 6.96774194]]])'''plt.imshow(new_china / 255)
DBSCAN聚类算法
导包
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inlinefrom sklearn.cluster import KMeans, DBSCAN
生成数据make_blobs()
from sklearn.datasets import make_blobsfrom sklearn.datasets import make_blobsdata,target = make_blobs()plt.scatter(data[:,0],data[:,1],c=target)
使用DBSCAN
# eps:半径# min_samples:形成组(簇)的最小样本数dbscan = DBSCAN(eps=1,min_samples=3)dbscan.fit(data)# 标签,分组结果dbscan.labels_# -1:离群点/噪声点'''array([ 0, 0, 1, -1, 0, 1, 2, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2, 0, 0, 2, 0, 0, 2, 0, 2, 1, 2, 0, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, -1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 1, -1, 2, 1, -1, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 1, 0, 2, -1, 1, 0, 2], dtype=int64)'''plt.scatter(data[:,0],data[:,1],c=dbscan.labels_)
分别使用KMeans和DBSCAN算法
画圆
from sklearn.datasets import make_circles使用make_circles()from sklearn.datasets import make_circles# 画圆data,target = make_circles( n_samples=300, # 样本数 noise=0.09,# 噪声 factor=0.4,# 可理解为两堆点的离散程度,值小于 1)plt.figure(figsize=(6,6))plt.scatter(data[:,0],data[:,1],c=target)
# 使用 DBSCANdbscan = DBSCAN(eps=0.2,min_samples=3)dbscan.fit(data)plt.scatter(data[:,0],data[:,1],c=dbscan.labels_)
使用KMeans 查看效果区别
kmeans = KMeans(n_clusters=2)kmeans.fit(data)plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)
轮廓系数
聚类算法的评估指标,轮廓系数
聚类评估:轮廓系数(Silhouette Coefficient )
计算样本i到同簇其他样本的平均距离ai。ai 越小,说明样本i越应该被聚类到该簇。将ai 称为样本i的簇内不相似度。计算样本i到其他某簇Cj 的所有样本的平均距离bij,称为样本i与簇Cj 的不相似度。定义为样本i的簇间不相似度:bi =min{bi1, bi2, ..., bik}si接近1,则说明样本i聚类合理si接近-1,则说明样本i更应该分类到另外的簇若si 近似为0,则说明样本i在两个簇的边界上。import pandas as pdimport numpy as npimport matplotlib.pyplot as plt%matplotlib inline
加载数据
beer.txtbeer = pd.read_table('../data/beer.txt',sep=' ')beer
data = beer.iloc[:,1:].copy()
导入KMeans
from sklearn.cluster import KMeans, DBSCANfrom sklearn.cluster import KMeans, DBSCANkmeans = KMeans(n_clusters=4)kmeans.fit(data)kmeans.labels_# array([0, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 3, 0, 0, 3, 1])
计算轮廓系数
silhouette_samples: 每个样本的轮廓系数 from sklearn.metrics import silhouette_samples平均轮廓系数得分 from sklearn.metrics import silhouette_scorefrom sklearn.metrics import silhouette_samples,silhouette_score# silhouette_samples(data,kmeans.labels_)'''array([0.69616375, 0.59904896, 0.22209903, 0.33228274, 0.47164962, 0.6803127 , 0.41274592, 0.53937684, 0.73244266, 0.58828484, 0.70434972, 0.71134265, 0.52449913, 0.63186817, 0.45253349, 0.72050474, 0.6934216 , 0.66869429, 0.68369738, 0.64876323])'''silhouette_score(data,kmeans.labels_) # 平均轮廓系数# 0.5857040721127795
如何根据轮廓系数选择最合适的K
轮廓系数越大, K值越合适# 提供不同的 K 值,分别计算轮廓系数score_list = []for k in range(2,20): kmeans = KMeans(k) kmeans.fit(data) score = silhouette_score(data,kmeans.labels_)# print(k,'得分',score) score_list.append(score) # 画图plt.plot(range(2,20),score_list)plt.xticks(range(2,20))plt.grid()plt.show()
DBSCAN使用轮廓系数
from sklearn.cluster import KMeans, DBSCAN
score_list = []for eps in range(2,26): dbscan = DBSCAN(eps=eps,min_samples=2) dbscan.fit(data) score = silhouette_score(data,dbscan.labels_) score_list.append(score) # 画图plt.plot(range(2,26),score_list)plt.xticks(range(2,26))plt.grid()plt.show()# eps半径 = 18到22时轮廓系数最大