???欢迎来到本博客???
本次博客内容将继续讲解关于OpenCV的相关知识
?作者简介:⭐️⭐️⭐️目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉(OpenCV)、群智能算法。然后正在学习深度学习的相关内容。以后可能会涉及到网络安全相关领域,毕竟这是每一个学习计算机的梦想嘛!
?目前更新:???目前已经更新了关于网络爬虫的相关知识、机器学习的相关知识、目前正在更新计算机视觉-OpenCV的相关内容。
???本文摘要???
本文我们将继续讲解人工智能经典项目-答题卡试卷识别判卷的相关操作。文章目录?写在前面?项目目标?项目讲解⭐️一、数据预处理⭐️二、透视变换⭐️三、阈值处理⭐️四、过滤干扰项⭐️五、展示操作⭐️后续问题 |
?写在前面
光学标记识别(简称OMR)是自动分析人工标记文档并解释其结果的过程。
我们之前在20年差不多都是人工去识别判卷,那个时候一个班级的试卷需要老师花费差不多1个小时才可以判完。效率就比较低,随着这个计算机硬件和信息大爆炸时代的到来,人工智能也开始飞跃的发展。对于这个试卷的问题,我们再用人工智能去做的时候,1个小时可以判几十万或者更多的试卷。所以人工智能对人类的发展是有一个质的飞跃的。那么我们就来了解一下他是一个怎么样的过程。
?项目目标
我们对于一个答题卡拿来差不多是这个样子。
如果我们做一个和四六级差不多的卷子,那么我们同这个项目的原理是一致的。我们就以上图为例子来看。
项目目标:首先我们要在图片中,把试卷的区域利用透视变换给拿出来。也就是提取自己的ROI区域。然后答题卡填充的答案类似于实心的,没有填充的答案类似于是一个空心的。识别出来之后,我们要和输入的答案进行一个比较,如果对就记录下来,如果不对,那么就不记录,最后利用这个来判分。完成一个批分的功能。
1:检测图像中的检查。
2:应用透视转换以提取考试的自上而下的鸟瞰图。
3:从转换的考试的角度中提取气泡集(即可能的答案选择)。
4:将问题/气泡排序为行。
5:确定每行的标记(即“气泡”)答案。
6:在我们的答案键中查找正确答案,以确定用户的选择是否正确。
7:对考试中的所有问题重复上述步骤。
?项目讲解
⭐️一、数据预处理
导入参数
ap = argparse.ArgumentParser()ap.add_argument("-i", "--image", required=True,help="path to the input image")args = vars(ap.parse_args())
def cv_show(name,img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows()image = cv2.imread(args["image"])contours_img = image.copy()gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)blurred = cv2.GaussianBlur(gray, (5, 5), 0)cv_show('blurred',blurred)edged = cv2.Canny(blurred, 75, 200)cv_show('edged',edged)
这里是一些基础的形态学操作,首先我们将图像由RGB转为gray图像,灰度图像。然后我们对灰度图像进行一个高斯滤波操作,目的就是消除掉图片中的一些噪音点,方便后期处理。
高斯滤波之后,我们又做了一次边缘检测,以75和200像素值作为阈值。对滤波后的操作进行一个边缘检测。
然后我们对边缘检测后的图像进行轮廓检测,并且画出轮廓。文档的边缘是如何清晰定义的,检查的所有四个顶点都存在于图像中。获取文档的这个轮廓非常重要,因为我们将使用它作为标记,将透视转换应用于考试,从而获得文档的自上而下的鸟瞰图。
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) cv_show('contours_img',contours_img)
这里要注意就是老版本的CV轮廓检测返回的是三个结果,而新的版本返回的是两个结果。所以我们只需要第一个结果,所以索引就是定位0,老版本就定为1.然后我们定义参数,只检测外轮廓,并且使用四个点检测轮廓的方法。完成之后我们生成的图像就是:
我们检测出来外面轮廓之后,接下来想把整个试卷拿出来,做一个透视变换操作。拿到轮廓的坐标。
docCnt = Noneif len(cnts) > 0:# 根据轮廓大小进行排序cnts = sorted(cnts, key=cv2.contourArea, reverse=True)# 遍历每一个轮廓for c in cnts:peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 准备做透视变换if len(approx) == 4:docCnt = approxbreak
⭐️二、透视变换
这里我们把轮廓按照面积做了一个排序,然后遍历排序后的轮廓。cv2.approxPolyDP
主要功能是把一个连续光滑曲线折线化。如果轮廓检测出来是四个点组成的,那么我们就把他给拿出来。
warped = four_point_transform(gray, docCnt.reshape(4, 2))cv_show('warped',warped)
其中four_point_transform函数对应的转换操作是:
def four_point_transform(image, pts):rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
首先我们用order_points
把四个点的坐标提取出来了。然后我们计算一下透视变换的w和h。选择出来透视变换之后的坐标结果。然后我们基于这两个结果求出一个中间矩阵M,然后使用一个当前矩阵*中间矩阵M就得到了透视变换之后的结果。
其中order_points
函数是:
def order_points(pts):rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
对着四个点进行操作,如果相加那么肯定是左上的点是最小的,右下的点是最大的。那么我们把他提取出来。然后在做差,那么很明显就是右上是最大的,左下是最小的,这样我们就把四个点给提取出来了。然后返回回去。
⭐️三、阈值处理
我们拿到了透视变换的结果之后,对透视结果进行操作,首先我们进行一次阈值处理。这里的阈值处理如下:
thresh = cv2.threshold(warped, 0, 255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cv_show('thresh',thresh)
**这里不是选择阈值为0,再次强调!!!!**而是让计算机随机的给我们提供一个阈值合适的数值。然后进行阈值处理。得到的结果是:
然后对结果做一次轮廓检测。
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) cv_show('thresh_Contours',thresh_Contours)
还是同上面做轮廓检测的结果一致。得到的结果是这样:
⭐️四、过滤干扰项
然后我们过滤掉一些干扰项。
questionCnts = []for c in cnts:(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)#ar定义一个长宽比if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)questionCnts = sort_contours(questionCnts,method="top-to-bottom")[0]correct = 0# 每排有5个选项for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):cnts = sort_contours(questionCnts[i:i + 5])[0]bubbled = None# 遍历每一个结果for (j, c) in enumerate(cnts):# 使用mask来判断结果mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充cv_show('mask',mask)# 通过计算非零点数量来算是否选择这个答案mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)# 通过阈值判断if bubbled is None or total > bubbled[0]:bubbled = (total, j)# 对比正确答案color = (0, 0, 255)k = ANSWER_KEY[q]# 判断正确if k == bubbled[1]:color = (0, 255, 0)correct += 1# 绘图cv2.drawContours(warped, [cnts[k]], -1, color, 3)
首先我们定义一个长宽比,然后我们根据长宽比和wh对实际项目进行一个过滤轮廓操作。首先我们进行一次竖直方向的一个排序。分为一排一排的,然后我们在遍历每一排,对每一排进行一个排序。然后我们使用一个掩码和正确答案做一个与操作,然后通过判断其中非0点的个数来判断是都是正确答案。因为涂卡的地方我们处理之后的结果都是白色像素点较多。选择出来结果之后我们和正确答案进行一次对比。正确答案是我们提前定义好的:通过对比索引,我们就可以得到结果。
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
其中sort_contours
的函数具体是这样。
def sort_contours(cnts, method="left-to-right"): reverse = False i = 0 if method == "right-to-left" or method == "bottom-to-top": reverse = True if method == "top-to-bottom" or method == "bottom-to-top": i = 1 boundingBoxes = [cv2.boundingRect(c) for c in cnts] (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes
排序的结果也可以展示一下。
通过一次一次遍历来判断。
⭐️五、展示操作
score = (correct / 5.0) * 100print("[INFO] score: {:.2f}%".format(score))cv2.putText(warped, "{:.2f}%".format(score), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)cv2.imshow("Original", image)cv2.imshow("Exam", warped)cv2.waitKey(0)
在原图中画出来可以使用红色标记为错误选项!
这里我们就完成了判卷的过程。
⭐️后续问题
1.如果用户在特定问题的答案中没有冒泡,会发生什么情况?
2.如果用户是恶意的,并在同一行中将多个气泡标记为“正确”,该怎么办?
对于问题一:
如果考试的人选择不在特定行的答案中冒泡,那么我们可以在代码中上放置一个最小阈值,cv2.countNonZero
**如果这个值足够大,那么我们可以将选项标记为“已填充”。相反,如果太小,那么我们可以跳过那个特定的气泡。如果在行的末尾没有具有足够大阈值计数的气泡,我们可以将问题标记为应试者“跳过”。**也就是没有答题。
对于问题二:
**同样,我们需要做的就是应用阈值和计数步骤,这次如果有多个气泡的 a 超过某个预定义的值,则进行跟踪。如果是这样,我们可以使问题无效并将问题标记为不正确。**也就是说是单选,而考试的人选择多个选项。
?支持:???如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!