【贝叶斯决策理论】— 基于两类问题的决策分析
在jupyter lab上实现:
 
导包:
import numpy as np
from numpy.linalg import cholesky
import matplotlib.pyplot as plt
设置随机样本数:
sampleNo = 40;
第一类:
# w1
mu = np.array([[2, 2]])
Sigma = np.array([[2, 0], [0, 2]])
R = cholesky(Sigma)
s = np.dot(np.random.randn(sampleNo, 2), R) + mu
plt.plot(s[:,0],s[:,1],'r+')
plt.title('$w_1$')
plt.show()
图示:
 
第二类:
# w2
mu = np.array([[4, 4]])
Sigma = np.array([[1, 0], [0, 1]])
R = cholesky(Sigma)
s = np.dot(np.random.randn(sampleNo, 2), R) + mu
plt.plot(s[:,0],s[:,1],'r+')
plt.title('$w_2$')
plt.show()
图示:
 
两类判别函数的一般式:
 
     
      
       
        
         
          g
         
         
          i
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          1
         
         
          
           2
          
          
           
            σ
           
           
            i
           
           
            2
           
          
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         )
        
        
         +
        
        
         
          1
         
         
          
           σ
          
          
           i
          
          
           2
          
         
        
        
         (
        
        
         
          μ
         
         
          
           i
          
          
           1
          
         
        
        
         
          x
         
         
          1
         
        
        
         +
        
        
         
          μ
         
         
          
           i
          
          
           2
          
         
        
        
         
          x
         
         
          2
         
        
        
         )
        
        
         −
        
        
         
          1
         
         
          
           2
          
          
           
            σ
           
           
            i
           
           
            2
           
          
         
        
        
         (
        
        
         
          μ
         
         
          
           i
          
          
           1
          
         
         
          2
         
        
        
         +
        
        
         
          μ
         
         
          
           i
          
          
           2
          
         
         
          2
         
        
        
         )
        
        
         +
        
        
         ln
        
        
         
        
        
         P
        
        
         (
        
        
         
          w
         
         
          i
         
        
        
         )
        
        
         −
        
        
         
          d
         
         
          2
         
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
        
         −
        
        
         
          1
         
         
          2
         
        
        
         ln
        
        
         
        
        
         ∣
        
        
         
          Σ
         
         
          i
         
        
        
         ∣
        
       
       
         g_i(x)=-\frac{1}{2 \sigma_i^2} (x_1^2+x_2^2) + \frac{1}{\sigma_i^2} (\mu_{i1} x_1 + \mu_{i2} x_2) - \frac{1}{2 \sigma_i^2} (\mu_{i1}^2+\mu_{i2}^2) + \ln P(w_i) -\frac{d}{2} \ln 2\pi-\frac{1}{2} \ln |\Sigma_i| 
       
      
     gi(x)=−2σi21(x12+x22)+σi21(μi1x1+μi2x2)−2σi21(μi12+μi22)+lnP(wi)−2dln2π−21ln∣Σi∣
 说明:
 
     
      
       
        
         
          σ
         
         
          1
         
         
          2
         
        
        
         =
        
        
         2
        
        
         ,
        
        
         
          σ
         
         
          2
         
         
          2
         
        
        
         =
        
        
         1
        
        
        
         
          μ
         
         
          1
         
        
        
         =
        
        
         [
        
        
         2
        
        
         ,
        
        
         2
        
        
         
          ]
         
         
          T
         
        
        
         ,
        
        
         
          μ
         
         
          2
         
        
        
         =
        
        
         [
        
        
         4
        
        
         ,
        
        
         4
        
        
         
          ]
         
         
          T
         
        
        
        
         P
        
        
         (
        
        
         
          w
         
         
          1
         
        
        
         )
        
        
         =
        
        
         P
        
        
         (
        
        
         
          w
         
         
          2
         
        
        
         )
        
        
         =
        
        
         
          1
         
         
          2
         
        
        
        
         d
        
        
         =
        
        
         2
        
        
        
         ∣
        
        
         
          Σ
         
         
          1
         
        
        
         ∣
        
        
         =
        
        
         4
        
        
         ,
        
        
         ∣
        
        
         
          Σ
         
         
          2
         
        
        
         ∣
        
        
         =
        
        
         1
        
       
       
         \sigma_1^2=2,\sigma_2^2=1 \\ \mu_1=[2,2]^T,\mu_2=[4,4]^T \\ P(w_1)=P(w_2)=\frac{1}{2} \\ d=2 \\ |\Sigma_1|=4,|\Sigma_2|=1 
       
      
     σ12=2,σ22=1μ1=[2,2]T,μ2=[4,4]TP(w1)=P(w2)=21d=2∣Σ1∣=4,∣Σ2∣=1
 
    
     
      
       
        
         g
        
        
         1
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_1(x)
      
     
    g1(x):
 
     
      
       
        
         
          g
         
         
          1
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          1
         
         
          4
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         )
        
        
         +
        
        
         
          x
         
         
          1
         
        
        
         +
        
        
         
          x
         
         
          2
         
        
        
         −
        
        
         2
        
        
         −
        
        
         2
        
        
         ln
        
        
         
        
        
         2
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
       
       
         g_1(x)=-\frac{1}{4} (x_1^2+x_2^2) + x_1 + x_2 - 2 - 2\ln 2 - \ln 2 \pi 
       
      
     g1(x)=−41(x12+x22)+x1+x2−2−2ln2−ln2π
 
    
     
      
       
        
         g
        
        
         2
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_2(x)
      
     
    g2(x):
 
     
      
       
        
         
          g
         
         
          1
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          1
         
         
          2
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         )
        
        
         +
        
        
         4
        
        
         
          x
         
         
          1
         
        
        
         +
        
        
         4
        
        
         
          x
         
         
          2
         
        
        
         −
        
        
         8
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
       
       
         g_1(x)=-\frac{1}{2} (x_1^2+x_2^2) + 4x_1 + 4x_2 - 8 - \ln 2 - \ln 2 \pi 
       
      
     g1(x)=−21(x12+x22)+4x1+4x2−8−ln2−ln2π
 
    
     
      
       
        
         g
        
        
         1
        
       
       
        (
       
       
        x
       
       
        )
       
       
        −
       
       
        
         g
        
        
         2
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_1(x)-g_2(x)
      
     
    g1(x)−g2(x):
 
     
      
       
        
         
          g
         
         
          1
         
        
        
         (
        
        
         x
        
        
         )
        
        
         −
        
        
         
          g
         
         
          2
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         
          1
         
         
          4
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         )
        
        
         −
        
        
         3
        
        
         
          x
         
         
          1
         
        
        
         −
        
        
         3
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         6
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
       
       
         g_1(x)-g_2(x)=\frac{1}{4} (x_1^2+x_2^2) - 3x_1 - 3x_2 + 6 - \ln 2 
       
      
     g1(x)−g2(x)=41(x12+x22)−3x1−3x2+6−ln2
 判别界面的方程:
 
     
      
       
        
         
          1
         
         
          4
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         )
        
        
         −
        
        
         3
        
        
         
          x
         
         
          1
         
        
        
         −
        
        
         3
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         6
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         =
        
        
         0
        
       
       
         \frac{1}{4} (x_1^2+x_2^2) - 3x_1 - 3x_2 + 6 - \ln 2 = 0 
       
      
     41(x12+x22)−3x1−3x2+6−ln2=0
 判别界面图像绘制代码:
from sympy.parsing.sympy_parser import parse_expr
from sympy import plot_implicit
ezplot = lambda exper: plot_implicit(parse_expr(exper)) # 用了匿名函数
expression='0.25*(x**2+y**2)-3*x-3*y+6-log(2)' 
ezplot(expression); # 能描绘大致的图像
图示:
 
曲线下方为 w 1 w_1 w1,曲线上方为 w 2 w_2 w2
 
 
第一类:
sampleNo = 50; % 随机样本数
mu = np.array([[0, 0, 0]])
Sigma = np.array([[0.3, 0, 0], [0, 0.3, 0],[0, 0, 0.3]])
R = cholesky(Sigma)
s = np.dot(np.random.randn(sampleNo, 3), R) + mu
x, y, z = s[:,0],s[:,1],s[:,2]
ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
ax.scatter(x, y, z, c='r')
plt.title('$w_1$')
ax.set_zlabel('Z')
ax.set_ylabel('Y')
ax.set_xlabel('X')
plt.show()
图示:
 
第二类:
sampleNo = 50;
mu = np.array([[0.5, 0.5, 0.5]])
Sigma = np.array([[0.3, 0.1, 0.1], [0.1, 0.3, -0.1],[0.1, -0.1, 0.3]])
R = cholesky(Sigma)
s = np.dot(np.random.randn(sampleNo, 3), R) + mu
x, y, z = s[:,0],s[:,1],s[:,2]
ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
ax.scatter(x, y, z, c='r')
plt.title('$w_2$')
ax.set_zlabel('Z')
ax.set_ylabel('Y')
ax.set_xlabel('X')
plt.show()
图示:
 
判别函数一般式:
 
     
      
       
        
         
          g
         
         
          i
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          1
         
         
          2
         
        
        
         
          x
         
         
          T
         
        
        
         
          Σ
         
         
          i
         
         
          
           −
          
          
           1
          
         
        
        
         x
        
        
         +
        
        
         
          1
         
         
          2
         
        
        
         
          x
         
         
          T
         
        
        
         
          Σ
         
         
          i
         
         
          
           −
          
          
           1
          
         
        
        
         
          μ
         
         
          i
         
        
        
         −
        
        
         
          1
         
         
          2
         
        
        
         
          μ
         
         
          i
         
         
          T
         
        
        
         
          Σ
         
         
          i
         
         
          
           −
          
          
           1
          
         
        
        
         
          μ
         
         
          i
         
        
        
         +
        
        
         
          1
         
         
          2
         
        
        
         
          μ
         
         
          i
         
         
          T
         
        
        
         
          Σ
         
         
          i
         
         
          
           −
          
          
           1
          
         
        
        
         x
        
        
         +
        
        
         ln
        
        
         
        
        
         P
        
        
         (
        
        
         
          w
         
         
          i
         
        
        
         )
        
        
         −
        
        
         (
        
        
         d
        
        
         /
        
        
         2
        
        
         )
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
        
         −
        
        
         (
        
        
         1
        
        
         /
        
        
         2
        
        
         )
        
        
         ln
        
        
         
        
        
         ∣
        
        
         
          Σ
         
         
          i
         
        
        
         ∣
        
       
       
         g_i(x)=-\frac{1}{2} x^T \Sigma_i^{-1} x+\frac{1}{2} x^T \Sigma_i^{-1} \mu_i - \frac{1}{2} \mu_i^T \Sigma_i^{-1} \mu_i + \frac{1}{2} \mu_i^T \Sigma_i^{-1} x + \ln P(w_i) -(d/2)\ln 2\pi-(1/2) \ln |\Sigma_i| 
       
      
     gi(x)=−21xTΣi−1x+21xTΣi−1μi−21μiTΣi−1μi+21μiTΣi−1x+lnP(wi)−(d/2)ln2π−(1/2)ln∣Σi∣
 
    
     
      
       
        
         g
        
        
         1
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_1(x)
      
     
    g1(x):
 
     
      
       
        
         
          g
         
         
          1
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          5
         
         
          3
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          3
         
         
          2
         
        
        
         )
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         −
        
        
         
          3
         
         
          2
         
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
        
         +
        
        
         1.8060
        
       
       
         g_1(x)=-\frac{5}{3} (x_1^2+x_2^2+x_3^2) - \ln 2 -\frac{3}{2} \ln 2\pi+1.8060 
       
      
     g1(x)=−35(x12+x22+x32)−ln2−23ln2π+1.8060
 
    
     
      
       
        
         g
        
        
         2
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_2(x)
      
     
    g2(x):
 
     
      
       
        
         
          g
         
         
          2
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         0.3
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          3
         
         
          2
         
        
        
         )
        
        
         +
        
        
         0.2
        
        
         (
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         
          x
         
         
          2
         
        
        
         
          x
         
         
          3
         
        
        
         )
        
        
         −
        
        
         0.5
        
        
         
          x
         
         
          1
         
        
        
         −
        
        
         0.3
        
        
         
          x
         
         
          2
         
        
        
         −
        
        
         0.3
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         ln
        
        
         
        
        
         2
        
        
         −
        
        
         
          3
         
         
          2
         
        
        
         ln
        
        
         
        
        
         2
        
        
         π
        
        
         +
        
        
         2.0676
        
       
       
         g_2(x)=0.3(x_1^2+x_2^2+x_3^2)+0.2(x_1x_2+x_1x_3-x_2x_3)-0.5x_1-0.3x_2-0.3x_3- \ln 2 -\frac{3}{2} \ln 2\pi +2.0676 
       
      
     g2(x)=0.3(x12+x22+x32)+0.2(x1x2+x1x3−x2x3)−0.5x1−0.3x2−0.3x3−ln2−23ln2π+2.0676
 
    
     
      
       
        
         g
        
        
         1
        
       
       
        (
       
       
        x
       
       
        )
       
       
        −
       
       
        
         g
        
        
         2
        
       
       
        (
       
       
        x
       
       
        )
       
      
      
       g_1(x)-g_2(x)
      
     
    g1(x)−g2(x):
 
     
      
       
        
         
          g
         
         
          1
         
        
        
         (
        
        
         x
        
        
         )
        
        
         −
        
        
         
          g
         
         
          2
         
        
        
         (
        
        
         x
        
        
         )
        
        
         =
        
        
         −
        
        
         
          59
         
         
          30
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          3
         
         
          2
         
        
        
         )
        
        
         −
        
        
         0.2
        
        
         (
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         
          x
         
         
          2
         
        
        
         
          x
         
         
          3
         
        
        
         )
        
        
         +
        
        
         0.5
        
        
         
          x
         
         
          1
         
        
        
         +
        
        
         0.3
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         0.3
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         0.2616
        
       
       
         g_1(x)-g_2(x)=-\frac{59}{30}(x_1^2+x_2^2+x_3^2)-0.2(x_1x_2+x_1x_3-x_2x_3) +0.5x_1+0.3x_2+0.3x_3 -0.2616 
       
      
     g1(x)−g2(x)=−3059(x12+x22+x32)−0.2(x1x2+x1x3−x2x3)+0.5x1+0.3x2+0.3x3−0.2616
 决策面方程:
 
     
      
       
        
         −
        
        
         
          59
         
         
          30
         
        
        
         (
        
        
         
          x
         
         
          1
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          2
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          3
         
         
          2
         
        
        
         )
        
        
         −
        
        
         0.2
        
        
         (
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         
          x
         
         
          1
         
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         
          x
         
         
          2
         
        
        
         
          x
         
         
          3
         
        
        
         )
        
        
         +
        
        
         0.5
        
        
         
          x
         
         
          1
         
        
        
         +
        
        
         0.3
        
        
         
          x
         
         
          2
         
        
        
         +
        
        
         0.3
        
        
         
          x
         
         
          3
         
        
        
         −
        
        
         0.2616
        
        
         =
        
        
         0
        
       
       
         -\frac{59}{30}(x_1^2+x_2^2+x_3^2)-0.2(x_1x_2+x_1x_3-x_2x_3) +0.5x_1+0.3x_2+0.3x_3 -0.2616=0 
       
      
     −3059(x12+x22+x32)−0.2(x1x2+x1x3−x2x3)+0.5x1+0.3x2+0.3x3−0.2616=0