当前位置:首页 » 《关注互联网》 » 正文

【C++】了解map和set及平衡二叉树和红黑树的原理

14 人参与  2024年11月29日 08:01  分类 : 《关注互联网》  评论

点击全文阅读


目录

​编辑

一、关联式容器

二、 键值对

三、pair介绍

 四、树形结构的关联式容器

4.1 set

4.2 map

4.3 multiset

4.4 multimaps

 五、底层结构(重点)

5.1 AVL 树

5.1.1 AVL树的概念

5.1.2 AVL树节点的定义

5.1.3 AVL树的旋转

5.1.4 AVL树的插入

5.1.5 AVL树的删除(了解)

5.1.6 AVL树的性能 

5.2  红黑树

5.2.1 红黑树的概念

5.2.2 红黑树的性质

5.2.3 红黑树节点的定义

5.2.4 红黑树结构

5.2.5 红黑树的插入操作

4.2.6 红黑树的删除

4.2.7 红黑树与AVL树的比较

4.2.8 红黑树的应用

结尾:


一、关联式容器

在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、

forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?

关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是结构的键值对,在数据检索时比序列式容器效率更高。


二、 键值对

用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。

SGI-STL中关于键值对的定义:

template <class T1, class T2>struct pair{typedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair() : first(T1()), second(T2()){}pair(const T1& a, const T2& b): first(a), second(b){}};

三、pair介绍

在C++中,pair 是一种标准库模板,定义在头文件 <utility> 中。它用于存储一对值,这两个值可以是不同的数据类型。pair 的第一个元素称为 first,第二个元素称为 second。pair 类型提供了一种将两个数据组合成一个单元的方式,这在很多情况下都非常有用,比如当函数需要返回两个值时。

pair的常用接口


 四、树形结构的关联式容器

根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结 构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一 个容器。

4.1 set

set是按照一定次序存储元素的容器在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。set在底层是用二叉搜索树(红黑树)实现的。

注意:

与map/multimap不同,map/multimap中存储的是真正的键值对,set中只放value,但在底层实际存放的是由构成的键值对。set中插入元素时,只需要插入value即可,不需要构造键值对。set中的元素不可以重复(因此可以使用set进行去重)。使用set的迭代器遍历set中的元素,可以得到有序序列set中的元素默认按照小于来比较set中查找某个元素,时间复杂度为:$log_2 n$set中的元素不允许修改(为什么?)set中的底层使用二叉搜索树(红黑树)来实现。

1. set的模板参数列表

T: set中存放元素的类型,实际在底层存储的键值对。

Compare:set中元素默认按照小于来比较

Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理

2. 构造方法

3. set的迭代器

4.set的容量

5. set修改操作 

6. set的使用举例  

#include <set>void TestSet(){// 用数组array中的元素构造setint array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4,6, 8, 0 };set<int> s(array, array + sizeof(array) / sizeof(array));cout << s.size() << endl;// 正向打印set中的元素,从打印结果中可以看出:set可去重for (auto& e : s)cout << e << " ";cout << endl;// 使用迭代器逆向打印set中的元素for (auto it = s.rbegin(); it != s.rend(); ++it)cout << *it << " ";cout << endl;// set中值为3的元素出现了几次cout << s.count(3) << endl;}

4.2 map

1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素。在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair:typedef pair value_type;在内部,map中的元素总是按照键值key进行比较排序的。map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。

1. map的模板参数说明

key: 键值对中key的类型

T: 键值对中value的类型

Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比

较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)

Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器

2. map的构造

 3. map的迭代器

4. map的容量与元素访问 

注意:在元素访问时,有一个与operator[]类似的操作at()(该函数不常用)函数,都是通过 key找到与key对应的value然后返回其引用,不同的是:当key不存在时,operator[]用默认 value与key构造键值对然后插入,返回该默认value,at()函数直接抛异常。  

5. map中元素的修改

6. map的使用举例

#include <string>#include <map>void TestMap(){map<string, string> m;// 向map中插入元素的方式:// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对m.insert(pair<string, string>("peach", "桃子"));// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对m.insert(make_pair("banan", "香蕉"));// 借用operator[]向map中插入元素   /*operator[]的原理是: 用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中 如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器 如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器 operator[]函数最后将insert返回值键值对中的value返回*/// 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引用结果,m["apple"] = "苹果";// key不存在时抛异常//m.at("waterme") = "水蜜桃";cout << m.size() << endl;// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列for (auto& e : m)cout << e.first << "--->" << e.second << endl;cout << endl;// map中的键值对key一定是唯一的,如果key存在将插入失败auto ret = m.insert(make_pair("peach", "桃色"));if (ret.second)cout << "<peach, 桃色>不在map中, 已经插入" << endl;elsecout << "键值为peach的元素已经存在:" << ret.first->first << "--->"<< ret.first->second << " 插入失败" << endl;// 删除key为"apple"的元素m.erase("apple");if (1 == m.count("apple"))cout << "apple还在" << endl;elsecout << "apple被吃了" << endl;}

 【总结】

map中的的元素是键值对map中的key是唯一的,并且不能修改默认按照小于的方式对key进行比较map中的元素如果用迭代器去遍历,可以得到一个有序的序列map的底层为平衡搜索树(红黑树),查找效率比较高$O(log_2 N)$6. 支持[]操作符,operator[]中实际进行插入查找。

4.3 multiset

multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。在multiset中,元素的value也会识别它(因为multiset中本身存储的就是组成 的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器 中进行修改(因为元素总是const的),但可以从容器中插入或删除。在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则 进行排序。multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭 代器遍历时会得到一个有序序列。multiset底层结构为二叉搜索树(红黑树)。

注意:

multiset中再底层中存储的是的键值对mtltiset的插入接口中只需要插入即可与set的区别是,multiset中的元素可以重复,set是中value是唯一的使用迭代器对multiset中的元素进行遍历,可以得到有序的序列 multiset中的元素不能修改在multiset中找某个元素,时间复杂度为O(log_2 N)multiset的作用:可以对元素进行排序

multiset的使用

此处只简单演示set与multiset的不同,其他接口接口与set相同,可参考set。

#include <set>void TestSet(){int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };// 注意:multiset在底层实际存储的是<int, int>的键值对multiset<int> s(array, array + sizeof(array) / sizeof(array[0]));for (auto& e : s)cout << e << " ";cout << endl;return 0;}

4.4 multimaps

​​​​​​multimap

Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对,其中多个键值对之间的key是可以重复的。在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内 容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起, value_type是组合key和value的键值对: typedef pair value_type;在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对 key进行排序的。multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代 器直接遍历multimap中的元素可以得到关于key有序的序列。multimap在底层用二叉搜索树(红黑树)来实现。

注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以 重复的。

multimap的使用

multimap中的接口可以参考map,功能都是类似的。

注意:

multimap中的key是可以重复的。multimap中的元素默认将key按照小于来比较multimap中没有重载operator[]操作(同学们可思考下为什么?)。使用时与map包含的头文件相同:

 五、底层结构(重点)

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个 共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中 插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此 map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

5.1 AVL 树

5.1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

它的左右子树都是AVL树左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(log_2 n),搜索时间复杂度O(log_2 n)。 

5.1.2 AVL树节点的定义
template <class K, class V>class AVLNode{public:AVLNode(const pair<K, V>& kv): _kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _bf(0){}pair<K, V> _kv;AVLNode<K, V>* _left;AVLNode<K, V>* _right;AVLNode<K, V>* _parent;int _bf;};
5.1.3 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧---左左:右单旋

/*  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加  了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,  即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:  1. 30节点的右孩子可能存在,也可能不存在  2. 60可能是根节点,也可能是子树     如果是根节点,旋转完成后,要更新根节点     如果是子树,可能是某个节点的左子树,也可能是右子树     */void RotateR(Node* parent){Node* cur = parent->_left;parent->_left = cur->_right;if (cur->_right)cur->_right->_parent = parent;cur->_right = parent;Node* pphead = parent->_parent;parent->_parent = cur;if (pphead == nullptr){_root = cur;cur->_parent = nullptr;}else{if(pphead->_left == parent){pphead->_left = cur;}else{pphead->_right = cur;}}parent->_bf = cur->_bf = 0;}

2. 新节点插入较高右子树的右侧---右右:左单旋 

void RotateL(Node* parent){Node* cur = parent->_right;parent->_right = cur->_left;if (cur->_left)cur->_left->_parent = parent;cur->_left = parent;Node* pphead = parent->_parent;parent->_parent = cur;if (pphead == nullptr){_root = cur;cur->_parent = nullptr;}else{if (pphead->_left == parent){pphead->_left = cur;}else{pphead->_right = cur;}cur->_parent = pphead;}parent->_bf = cur->_bf = 0;}

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

 将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;cur->_bf = 0;curright->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;curright->_bf = 0;}else if (bf == 1){parent->_bf = 0;cur->_bf = -1;curright->_bf = 0;}}

 4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){cur->_bf = 0;curleft->_bf = 0;parent->_bf = 0;}else if (bf == 1){cur->_bf = 0;curleft->_bf = 0;parent->_bf = -1;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}else{assert(false);}}

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

当pSubR的平衡因子为1时,执行左单旋当pSubR的平衡因子为-1时,执行右左双

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

当pSubL的平衡因子为-1是,执行右单旋当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5.1.4 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

bool Insert(const pair<K, V>& kv){Node* parent = nullptr;Node* cur = _root;if (_root == nullptr){Node* newnode = new Node(kv);_root = newnode;return true;}else{while (cur){if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else{return false;}}}cur = new Node(kv);if (parent->_kv.first > kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//뫘劤틱뷜凜綾while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == -1 || parent->_bf == 1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 0){break;}else if(parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == 2 && cur->_bf == 1){//璘데旗RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){//塘데己RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){cur->_bf = 0;curleft->_bf = 0;parent->_bf = 0;}else if (bf == 1){cur->_bf = 0;curleft->_bf = 0;parent->_bf = -1;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;cur->_bf = 0;curright->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;curright->_bf = 0;}else if (bf == 1){parent->_bf = 0;cur->_bf = -1;curright->_bf = 0;}}void RotateL(Node* parent){Node* cur = parent->_right;parent->_right = cur->_left;if (cur->_left)cur->_left->_parent = parent;cur->_left = parent;Node* pphead = parent->_parent;parent->_parent = cur;if (pphead == nullptr){_root = cur;cur->_parent = nullptr;}else{if (pphead->_left == parent){pphead->_left = cur;}else{pphead->_right = cur;}cur->_parent = pphead;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){Node* cur = parent->_left;parent->_left = cur->_right;if (cur->_right)cur->_right->_parent = parent;cur->_right = parent;Node* pphead = parent->_parent;parent->_parent = cur;if (pphead == nullptr){_root = cur;cur->_parent = nullptr;}else{if(pphead->_left == parent){pphead->_left = cur;}else{pphead->_right = cur;}}parent->_bf = cur->_bf = 0;}
5.1.5 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不 错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

可参考【C++融会贯通】二叉树进阶-CSDN博客

5.1.6 AVL树的性能 

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


5.2  红黑树

5.2.1 红黑树的概念

红黑树,是一种二叉搜索树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的

5.2.2 红黑树的性质
每个结点不是红色就是黑色 根节点是黑色的  如果一个节点是红色的,则它的两个孩子结点是黑色的  对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点  每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
5.2.3 红黑树节点的定义
enum Colour{Red,Black};template<class K,class V>struct RBTreeNode{RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), col(Red),_kv(kv){}RBTreeNode<K,V>* _left;RBTreeNode<K,V>* _right;RBTreeNode<K,V>* _parent;Colour col;pair<K, V> _kv;};
5.2.4 红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

5.2.5 红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2.检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一: cur为红,p为红,g为黑,u存在且为红

cur和p均为红,违反了性质三,此处能否将p直接改为黑?

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。  

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,

p为g的右孩子,cur为p的右孩子,则进行左单旋转

p、g变色--p变黑,g变红  

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,

p为g的右孩子,cur为p的左孩子,则针对p做右单旋转

则转换成了情况2  

针对每种情况进行相应的处理即可:

bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->col = Black;return true;}Node* parent = nullptr;Node* cur = _root;//找出要插入的位置while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}//把值插入到位置里cur = new Node(kv);if (parent->_kv.first > kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//判断是否还维持着红黑树while (parent && parent->col == Red){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//存在且为红if (uncle && uncle->col == Red){//变色uncle->col = parent->col = Black;grandfather->col = Red;//继续向上调整cur = grandfather;parent = cur->_parent;}else//不存在或者存在且为黑{//     g//   p// cif (cur == parent->_left){RotateR(grandfather);parent->col = Black;grandfather->col = Red;}else{//  g//t//  hRotateL(parent);RotateR(grandfather);cur->col = Black;grandfather->col = Red;}break;}}else   // parent == grandfather->_right{Node* uncle = grandfather->_left;// u存在且为红if (uncle && uncle->col == Red){// 变色parent->col = uncle->col = Black;grandfather->col = Red;// 继续向上处理cur = grandfather;parent = cur->_parent;}else{if (cur == parent->_right){// g//  p//       cRotateL(grandfather);grandfather->col = Red;parent->col = Black;}else{// g//  p// cRotateR(parent);RotateL(grandfather);cur->col = Black;grandfather->col = Red;}break;}}}_root->col = Black;return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}
4.2.6 红黑树的删除

红黑树的删除本节不做讲解,有兴趣的同学可参考:《算法导论》或者《STL源码剖析》

红黑树 - _Never_ - 博客园

4.2.7 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

4.2.8 红黑树的应用

1. C++ STL库 -- map/set、mutil_map/mutil_set

2. Java 库

3. linux内核

4. 其他一些库


结尾:

如果有什么建议和疑问,或是有什么错误,希望大家可以在评论区提一下。
希望大家以后也能和我一起进步!!
如果这篇文章对你有用的话,请大家给一个三连支持一下!!

谢谢大家收看??


点击全文阅读


本文链接:http://zhangshiyu.com/post/193701.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1