当前位置:首页 » 《关于电脑》 » 正文

人工智能和机器学习之线性代数(一)

26 人参与  2024年10月29日 16:40  分类 : 《关于电脑》  评论

点击全文阅读


人工智能和机器学习之线性代数(一)

本文Linear Algebra 101 for AI/ML – Part 1将介绍向量和矩阵的基础知识以及开源的机器学习框架PyTorch

文章目录

人工智能和机器学习之线性代数(一)基本定义标量(Scalar)向量(Vector)矩阵(Matrix)数学符号表示 使用 PyTorch 进行操作张量(Tensors)定义变量四则运算Sigmoid运算ReLU运算

基本定义

标量(Scalar)

标量是表示无方向的单个数值,仅仅表示程度或大小。在编程术语中,可以将标量视为包含单个数字的简单变量,例如整数或浮点数。标量的示例包括 温度(temperature)、年龄(age) 和 体重(weight)。

向量(Vector)

向量是标量的有序列表。之所以向量是有序的,因为标量在向量中的位置很重要。如下图所示 向量y表示电影《复仇者联盟:终局之战》Avengers: Endgame,向量中的每一个数字描述了影片的一个特定属性,其中action表示该电影属于动作类题材的占比为0.99,comedy表示属于喜剧题材的占比为0.52,drama表示属于戏剧题材的占比为0.45,horror表示属于恐怖题材的占比为0.10,romance表示属于浪漫题材的占比为0.26。

向量y
这部电影的动作值为 0.99,恐怖值为 0.10。这表明这部电影更像是一部动作片,而不是一部恐怖片。

向量y'
如果将 action 的值与 horor 的值交换,则该向量将不再准确表示电影《复仇者联盟:终局之战》,它不是恐怖电影。这就是顺序很重要的原因,即,改变顺序后变成另外一个向量。

向量总是以列或行的形式排列。以下是不同长度的行或列形式的向量。
行向量或列向量
注意,向量要么有一行,要么有一列。如果想要一个具有多行和多列的数学对象,该怎么办?这就是矩阵发挥作用的地方。

矩阵(Matrix)

如果标量是单个数字,向量是标量的一维有序列表,则矩阵是标量的二维数组。下面X 是一个示例矩阵(4行2列)。
矩阵X
每行对应于一个家庭的地址,即表示一个家庭。第一列表示家中卧室的数量,第二列表示浴室的数量。故矩阵X表示了多个家庭,以及每个家庭的特有属性。

二维矩阵也可以表示为向量的形式:

X = [ a ⃗ b ⃗ c ⃗ d ⃗ ] X=\begin{bmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{bmatrix} X= ​a b c d ​ ​

向量a表示地址为123 Maple Grove Lane的家庭:
a ⃗ = [ 3 3 ] \vec{a} =\begin{bmatrix} 3\\ 3 \end{bmatrix} a =[33​]
向量b表示地址为888 Ocean View Terrace的家庭:
b ⃗ = [ 4 3 ] \vec{b} =\begin{bmatrix} 4\\ 3 \end{bmatrix} b =[43​]
向量c表示地址为100 Birch Street的家庭:
c ⃗ = [ 5 3 ] \vec{c} =\begin{bmatrix} 5\\ 3 \end{bmatrix} c =[53​]
向量d表示地址为987 Sunflower Court的家庭:
d ⃗ = [ 5 4 ] \vec{d} =\begin{bmatrix} 5\\ 4 \end{bmatrix} d =[54​]

数学符号表示

实数集合R是数学家对在日常生活中使用的所有数字的表示方式:实数数轴线上的所有整数(whole numbers)、负数(negative numbers,)、分数(fractions)、小数(decimal numbers)和无理数( irrational numbers)。
实数R
下面的x表示任意一个实数标量

x ∈ R x\in R x∈R

下面的表示任意一个m维的向量
[ x 0 x 1 ⋮ x m − 1 ] ∈ R m \begin{bmatrix} x_{0} \\ x_{1}\\ \vdots \\ x_{m-1} \end{bmatrix}\in R^{m} ​x0​x1​⋮xm−1​​ ​∈Rm
下面表示任意m x n矩阵
[ x 0 , 0 x 0 , 1 … x 0 , n − 1 x 1 , 0 x 1 , 1 … x 1 , n − 1 ⋮ ⋮ ⋮ ⋮ x m − 1 , 0 x m − 1 , 1 … x m − 1 , n − 1 ] ∈ R m × n \begin{bmatrix} x_{0,0} & x_{0,1} & \dots & x_{0,n-1} \\ x_{1,0} & x_{1,1} & \dots & x_{1,n-1}\\ \vdots & \vdots& \vdots& \vdots\\ x_{m-1,0}& x_{m-1,1} & \dots & x_{m-1,n-1} \end{bmatrix} \in R^{m\times n} ​x0,0​x1,0​⋮xm−1,0​​x0,1​x1,1​⋮xm−1,1​​……⋮…​x0,n−1​x1,n−1​⋮xm−1,n−1​​ ​∈Rm×n

使用 PyTorch 进行操作

上面章节已经建立了向量和矩阵的定义及其数学符号,本节将在代码中简单尝试一下,加深一下印象。为此,将使用 PyTorch开源机器学习框架。PyTorch 在整个学术界和工业界广泛用于 OpenAIAmazonMetaSalesforce、斯坦福大学等机构和公司的尖端 AI 研究和生产级软件,以及数千家初创公司,因此积累该框架的经验将是实用的。请访问官方 PyTorch 安装说明页面以开始使用。

张量(Tensors)

向量具有1 维,矩阵具有2 个维度,那么涵盖 3 个或更多维度的通用术语是什么?答案:张量。实际上,向量和矩阵也是张量,因为张量是任何N 维数字数组。张量是 PyTorch 中的基本单位。使用 PyTorch 函数 torch.tensor(...) 创建向量和矩阵。

import torch>>> a = torch.rand((3, 4, 2)) # Create a threetensor([[[0.8856, 0.9232],    # dimensional tensor         [0.0250, 0.2977],    # with random values         [0.4745, 0.2243],         [0.3107, 0.9159]],        [[0.3654, 0.3746],         [0.4026, 0.4557],         [0.9426, 0.0865],         [0.3805, 0.5034]],        [[0.3843, 0.9903],         [0.6279, 0.2222],         [0.0693, 0.0140],         [0.6222, 0.3590]]])>>> a.shapetorch.Size([3, 4, 2]) # the tensor's dimensions

定义变量

定义向量a和矩阵m

import torcha = torch.tensor([[3], [4], [5], [5]])m = torch.tensor([[3,4], [5,6]])

a = [ 3 4 5 5 ] ∈ R 4 × 1 a=\begin{bmatrix} 3\\ 4\\ 5\\ 5 \end{bmatrix}\in R^{4\times 1} a= ​3455​ ​∈R4×1

m = [ 3 4 5 6 ] m=\begin{bmatrix} 3 & 4\\ 5 & 6 \end{bmatrix} m=[35​46​]

四则运算

简单的加减乘除四则运算
四则运算

>>> import torch>>> a = torch.tensor([1.0, 2.0, 4.0, 8.0])>>> b = torch.tensor([1.0, 0.5, 0.25, 0.125])>>> a + b # element-wise additiontensor([2.00, 2.50, 4.25, 8.125])>>> a - b # element-wise subtractiontensor([0.0, 1.5, 3.75, 7.8750])>>> a * b # element-wise multiplicationtensor([1., 1., 1., 1.])>>> a / b # element-wise divisiontensor([ 1.,  4., 16., 64.])

Sigmoid运算

sigmoid(x) 函数将x压缩到范围(0,1), 请注意,只有具有任意较大的值并且希望将它们压缩为介于 0 和 1 之间的值范围时,这非常有用。有时将 sigmoid 的输出解释为概率很有用。

σ ( x ) = 1 1 + e − x \sigma \left ( x \right ) =\frac{1}{1+e^{-x} } σ(x)=1+e−x1​

sigma函数图像

sigmoid

>>> torch.sigmoid(a)tensor([0.7311, 0.8808, 0.9820, 0.9997])>> torch.sigmoid(torch.tensor(239))tensor(1.)>>> torch.sigmoid(torch.tensor(0))tensor(0.5000)>>> torch.sigmoid(torch.tensor(-0.34))tensor(0.4158)

ReLU运算

ReLU 函数充当过滤器。任何正输入都保持不变,但任何负输入都变为零。

>>> c = torch.tensor([4, -4, 0, 2])>>> torch.relu(c)tensor([4, 0, 0, 2])

relu
relu函数图像


点击全文阅读


本文链接:http://zhangshiyu.com/post/179615.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1