泊松分布方法
泊松分布(Poisson distribution)是由法国数学家西莫恩·德尼·泊松在1838年提出来的,它描述的是单位时间内随机事件发生的次数的概率分布。这里,我们可以假设比赛双方的进球数符合泊松分布(这是很强、很朴素的假设),仅对其中的lambda参数进行建模,得到最终比赛的最大概率进球比分。
2.多分类方法
多分类方法则是把比分预测看作是一个多分类问题。经过数据统计我们发现,大多数比赛的单场进球数小于或等于4,如欧洲杯中97%的场次进球数小于5。如此,我们可以把比分预测看到是一个25(5*5)类别的分类问题,用Softmax函数对每种可能的比分进行建模
一、如何才能盈利
足球彩票品种多得让人剁手,这里只针对竞彩足球中最为简单的竞彩单场玩法进行分析。单场固定单注奖金计算公式为:所选场次的单场赔率×2元×倍数。
假设大壮投注n+m场比赛,其中猜对了n场比赛,猜中的n场比赛赔率分别为,则大壮可以用来给小美买包的总利润计算如下:
令总利润profit>0,对上式做一下简单的推导:
表明,若想最后总利润大于零,则要求投注比赛的预测准确率的倒数小于猜中比赛的平均赔率,即要求满足如下公式:
对于我们现有表现最好的模型(NN+SVM)来说,在英超训练集(1339场)和测试集(365场)中,预测结果如下:
预测准确率 | 准确率倒数 | 猜中场次平均赔率 |
54.55% | 1.8332 | 1.800802 |
结果仍然不满足公式(1)的要求,也就是说当我们完全根据模型预测结果进行投注时,从长远来看必定是亏本买卖。
二、分析模型的预测概率区间
模型预测的比赛结果给出了对应的概率,是否存在在一定的区间内,预测结果的概率值满足公式(1),如此只需要根据预测概率调整投注策略就可以了。
除了原来的测试集(365场),另随机产生了100场、200场、300场以及2015新赛季的100场英超比赛作为测试集进行测试,结果展示如下:
1/precise为预测比赛准确率的倒数
Bet_odds_avg为预测正确的比赛对应的赔率平均值
Odds_avg为各区间比赛结果对应的赔率平均值
可以看到当前训练集(1339场,无爆冷比赛)训练得到的SVM模型,对于英超比赛的预测,在概率p<0.4和p>=0.9的区间是满足公式(1)的,即足彩预测系统预测概率在此类区间时,如果进行投注能够盈利。根据这样的投注策略进行模拟投注,符合概率要求的均只投一注,可以得到以下数据:
推而广之,这样的投注策略在其他四大联赛中是否适用呢。同样的,我们随机地产生100场、200场和300场训练集分别对西甲、意甲、德甲和法甲进行测试。
可以看到其它联赛也存在类似的满足盈利公式(1)的概率区间,统计如下:
三、 实例分析:SoccerPredictor的AI预测
SoccerPredictor是一家领先的体育数据分析公司,提供详细的足球数据和分析服务。通过与AI技术的结合,SoccerPredictor能够对比赛进行深入的预测分析。利用庞大的数据库和复杂的算法,Opta的预测模型能够提供包括胜率、平局概率、负率在内的详细预测结果。
机器学习和深度学习模型
当前,机器学习和深度学习是AI预测比赛结果的主要技术手段。机器学习通过训练模型,使其能够从历史数据中学习并预测未来结果。深度学习则进一步利用神经网络,处理更复杂的数据和更精细的预测。