1.栈的概念
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶
2.栈结构的特点:
后进先出(LIFO):栈的最显著特点是后进先出的数据访问方式。也就是说,最后添加到栈中的元素会首先被移除,而最先添加的元素会被保留在栈的底部,直到后续被移除。限制性访问:栈通常只允许在栈顶进行操作,包括添加元素(入栈)和移除元素(出栈)。这种限制性访问确保了数据的一致性和有效性,因为只有最顶端的元素才是可见和可访问的。基于顺序存储或链式存储:栈可以基于顺序存储(如数组和顺序表)或链式存储(如链表)实现。在顺序存储中,栈的元素被连续存储在内存中的一个连续区域,并且栈顶的位置可以随着入栈和出栈操作进行动态调整。而在链式存储中,每个元素都有一个指向下一个元素的指针,形成了一个链式结构。常见应用:栈在计算机科学中有着广泛的应用,包括函数调用栈、表达式求值、语法分析、内存管理等方面。在算法和数据结构中,栈也是解决许多问题的重要工具。内存管理:栈内存储在程序的运行时栈空间中,由编译器或解释器负责管理。入栈和出栈操作通常比较高效,并且不会导致内存碎片化。总的来说,栈是一种简单但功能强大的数据结构,它的后进先出特性使其在许多领域都有着重要的应用。
栈结构通常是用顺序表来实现的,如果学会了顺序表和链表再来实现栈结构就行显得简单的多。
3.栈的实现
3.1头文件的声明
#pragma once#include<stdio.h>#include<stdlib.h>#include<assert.h>// 支持动态增长的栈typedef int STDataType;typedef struct Stack{STDataType* _a; //栈空间int _top;// 栈顶int _capacity; // 容量 }Stack;void StackInit(Stack* ps);// 初始化栈 void StackPush(Stack* ps, STDataType data);// 入栈 void StackPop(Stack* ps);// 出栈 STDataType StackTop(Stack* ps);// 获取栈顶元素 int StackSize(Stack* ps);// 获取栈中有效元素个数 int StackEmpty(Stack* ps);// 检测栈是否为空void StackDestroy(Stack* ps);// 销毁栈
3.2初始化栈
void StackInit(Stack* ps){assert(ps);ps->_a = NULL;ps->_top = ps->_capacity = 0;}
3.3入栈
void StackPush(Stack* ps, STDataType data){assert(ps);if (ps->_top == ps->_capacity){int dt = ps->_capacity == 0 ? 4 : ps->_capacity * 2;STDataType* pnew = (STDataType*)realloc(ps->_a, sizeof(STDataType) * dt);//申请栈空间assert(pnew);ps->_a = pnew;ps->_capacity = dt;//更新空间大小}ps->_a[ps->_top] = data;ps->_top++;}
3.4出栈
void StackPop(Stack* ps){assert(ps);assert(ps->_top);ps->_top--;}
3.5获取栈顶元素
STDataType StackTop(Stack* ps){assert(ps);assert(ps->_top);ps->_top--;return ps->_a[ps->_top];}
3.6判空
// 检测栈是否为空,如果为空返回0结果,如果不为空返回非零 int StackEmpty(Stack* ps){assert(ps);return ps->_top == 0 ? 1 : 0;}
3.7销毁栈
void StackDestroy(Stack* ps){assert(ps);free(ps->_a);ps->_a = NULL;ps->_top = ps->_capacity = 0;}
4.原码
Stack.h
#pragma once#include<stdio.h>#include<stdlib.h>#include<assert.h>// 支持动态增长的栈typedef int STDataType;typedef struct Stack{STDataType* _a;//栈空间int _top;// 栈顶int _capacity; // 容量 }Stack;// 初始化栈 void StackInit(Stack* ps);// 入栈 void StackPush(Stack* ps, STDataType data);// 出栈 void StackPop(Stack* ps);// 获取栈顶元素 STDataType StackTop(Stack* ps);// 获取栈中有效元素个数 int StackSize(Stack* ps);// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 int StackEmpty(Stack* ps);// 销毁栈 void StackDestroy(Stack* ps);
Stack.c
#include"Stack.h"// 初始化栈 void StackInit(Stack* ps){assert(ps);ps->_a = NULL;ps->_top = ps->_capacity = 0;}// 入栈 void StackPush(Stack* ps, STDataType data){assert(ps);if (ps->_top == ps->_capacity){int dt = ps->_capacity == 0 ? 4 : ps->_capacity * 2;STDataType* pnew = (STDataType*)realloc(ps->_a, sizeof(STDataType) * dt);//申请栈空间assert(pnew);ps->_a = pnew;ps->_capacity = dt;//更新空间大小}ps->_a[ps->_top] = data;ps->_top++;}// 出栈 void StackPop(Stack* ps){assert(ps);assert(ps->_top);ps->_top--;}// 获取栈顶元素 STDataType StackTop(Stack* ps){assert(ps);assert(ps->_top);ps->_top--;return ps->_a[ps->_top];}// 获取栈中有效元素个数 int StackSize(Stack* ps){assert(ps);return ps->_top;}// 检测栈是否为空,如果为空返回0结果,如果不为空返回非零 int StackEmpty(Stack* ps){assert(ps);return ps->_top == 0 ? 1 : 0;}// 销毁栈 void StackDestroy(Stack* ps){assert(ps);free(ps->_a);ps->_a = NULL;ps->_top = ps->_capacity = 0;}
test.c
#define _CRT_SECURE_NO_WARNINGS 1#include"Stack.h"int main(){Stack pst;Stack* pr = &pst;// 初始化栈 StackInit(pr);StackPush(pr, 1);StackPush(pr, 2);StackPush(pr, 3);StackPush(pr, 4);StackPush(pr, 5);StackPush(pr, 6);StackPop(pr);while (!StackEmpty(pr)){printf("%d ", StackTop(pr));}printf("\n%d", StackSize(pr));StackDestroy(pr);return 0;}