当前位置:首页 » 《休闲阅读》 » 正文

基于LIDC-IDRI肺结节肺癌数据集的人工智能深度学习分类良性和恶性肺癌(Python 全代码)全流程解析(二)

2 人参与  2024年04月28日 11:46  分类 : 《休闲阅读》  评论

点击全文阅读


基于LIDC-IDRI肺结节肺癌数据集的人工智能深度学习分类良性和恶性肺癌(Python 全代码)全流程解析(二)

1 环境配置和数据集预处理1.1 环境配置1.1 数据集预处理 2 深度学习模型训练和评估2.1 深度学习模型训练2.1 深度学习模型评估 笑话一则开心一下喽完整代码如下:模型文件如下深度学习模型讲解---待续

第一部分内容的传送门

1 环境配置和数据集预处理

1.1 环境配置

环境配置建议使用anaconda进行配置。核心的配置是keras和tensorflow的版本要匹配。
环境配置如下:
tensorboard 1.13.1
tensorflow 1.13.1
Keras 2.2.4
numpy 1.21.5
opencv-python 4.6.0.66
python 3.7

1.1 数据集预处理

数据集的预处理分为两个关键步骤。首先是图片处理,我们使用cv2库将图片转换为矩阵格式。这些矩阵随后被堆叠,并放入一个列表中,以便于深度学习模型的读取和处理。

其次是标签处理。我们从保存肺癌恶性程度信息的label.csv文件中逐行读取数据。通过切片和提取,我们获取了肺癌的恶性程度评级,这些评级在1到5之间。我们将大于3的评级归类为恶性,小于3的评级归类为良性。为了让模型更好地理解这些标签,我们用1表示良性,0表示恶性,最后将标签数据转换为one-hot编码格式。

输出与处理的函数如下:

import matplotlib.pyplot as pltimport numpy as npimport kerasimport cv2import osfrom keras.preprocessing.image import img_to_arrayfrom keras.utils import to_categorical, plot_modeldef load_data(label_path,data_path):    data_x = []    labels = []    f = open(label_path)    label = f.readlines()    for Pathimg in os.listdir(os.path.join(data_path,'x')):        Path    = os.path.join(os.path.join(data_path,'x'),Pathimg)        #print(Path)        image = cv2.imread(Path)        image = img_to_array(image)        data_x.append(image)                #处理label        index_num = int(Pathimg.split('.')[0])      #  print(labels)用索隐处理,        a         = label[index_num]        label_     = int(a[-3:-2])        label_1 = 1 if label_ > 3 else 0        labels.append(label_1)        print(labels)       # print(data)    #guiyihua    data_x = np.array(data_x,dtype='float') / 255.0    labels = np.array(labels)     #转化标签为张量    labels = to_categorical(labels)    #载入data——y    data_y = []    for Pathimg in os.listdir(os.path.join(data_path,'y')):        Path    = os.path.join(os.path.join(data_path,'y'),Pathimg)        #print(Path)        image = cv2.imread(Path)        image = img_to_array(image)        data_y.append(image)    #guiyihua    data_y = np.array(data_y,dtype='float') / 255.0        #处理Z    data_z = []    for Pathimg in os.listdir(os.path.join(data_path,'z')):        Path    = os.path.join(os.path.join(data_path,'z'),Pathimg)        #print(Path)        image = cv2.imread(Path)        image = img_to_array(image)        data_z.append(image)    #guiyihua    data_z = np.array(data_y,dtype='float') / 255.0    return labels,data_x,data_y,data_z

我们定义好数据预处理的函数后读取数据。图片的数据的格式如下:
其中有875个图片,每个图片的大小为50*50和3个通道
在这里插入图片描述
label的格式如下:
在这里插入图片描述

2 深度学习模型训练和评估

2.1 深度学习模型训练

我们已经在另一个文件中创建了一个深度学习模型,并且定义了一个函数来导入这个模型。在这里,我们将实例化这个函数。该函数会返回模型的结构以及模型训练的记录信息。

这个模型的输入是来自三个不同角度的图像和对应的标签。模型将被训练 5 个周期,每个周期训练 50 个图像。我们将使用 TensorBoard 查看模型的训练记录。

#######搭建模型model,callbacks = create_model()#模型训练H = model.fit([data_x,data_y,data_z],[labels],              epochs=5,batch_size=50, callbacks=callbacks)

训练结果如下:
我们可以看到训练的准确率还可以为0.7451左右
在这里插入图片描述

训练完成后我们将模型储存起来方便对模型进行评估。

#######save model to diskprint('info:saving model.....')model.save(os.path.join(result_path,'model_44.h5'))

2.1 深度学习模型评估

模型的评估我们首先使用了,分类模型训练的损失函数和准确率来评估模型的训练过程。之后我们还会介绍模型的评估的其他指标。包括混淆矩阵,ROC曲线,AUC值,等

#准确率损失曲线绘制plt.style.use('ggplot')plt.figure()N = 5fig =  plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")#plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")#plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")plt.title("Training Loss and Accuracy on traffic-sign classifier")plt.xlabel("Epoch #")plt.ylabel("Loss/Accuracy")plt.legend(loc="lower left")#plt.show()plt.savefig('a.jpg',dpi=800)

训练结果如下:

笑话一则开心一下喽

今天去买水果,我问一个摊主:别人家的瓜都写着不甜包退,你怎么不敢写呢,瓜不好吧。摊主:不买滚,我他么卖的是苦瓜……

深度学习,医学图像处理,机器学习精通,需要帮助的联系我(有偿哦)

完整代码如下:

import matplotlib.pyplot as pltimport numpy as npimport kerasimport cv2import osos.chdir('F:\工作\博客\sort_lung')from models import create_modelfrom load_datas import load_datalabel_path = r'F:\test\data\label.txt'data_path  = r'F:\test\data\train'result_path  = r'F:\test\result'#读取预处理数据labels,data_x,data_y,data_z = load_data(label_path,data_path)#######搭建模型model,callbacks = create_model()#模型训练H = model.fit([data_x,data_y,data_z],[labels],              epochs=5,batch_size=50, callbacks=callbacks)#save model to diskprint('info:saving model.....')model.save(os.path.join(result_path,'model_44.h5'))#准确率损失曲线绘制plt.style.use('ggplot')plt.figure()N = 5fig =  plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")#plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")#plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")plt.title("Training Loss and Accuracy on traffic-sign classifier")plt.xlabel("Epoch #")plt.ylabel("Loss/Accuracy")plt.legend(loc="lower left")#plt.show()plt.savefig('a.jpg',dpi=800)

模型文件如下

深度学习模型讲解—待续

# -*- coding: utf-8 -*-"""Created on Sun Apr 14 21:08:01 2024@author: dell"""from keras.preprocessing.image import ImageDataGeneratorfrom keras.optimizers import Adamfrom sklearn.model_selection import train_test_splitfrom keras.preprocessing.image import img_to_arrayfrom keras.utils import to_categorical, plot_modelfrom keras.models import Model#from imutils import pathsimport matplotlib.pyplot as pltimport numpy as npimport kerasimport cv2import os#定义模型from keras.models import Sequentialfrom keras.layers import Conv2D, MaxPooling2Dfrom keras.layers import Activation, Dropout, Flatten, Dense, Input,Concatenatedef create_model():    model = Sequential()    #############定义多输入    input1  = Input(shape=(50,50,3),name = 'input1')    input2  = Input(shape=(50,50,3),name = 'input2')    input3  = Input(shape=(50,50,3),name = 'input3')        #############定义多输入    x1 = Conv2D(32, (3, 3),padding='same' )(input1)#input is height,width,deep    x1 = Activation('relu')(x1)    x1 = Conv2D(32, (3, 3),padding='same')(x1)    x1 = Activation('relu')(x1)    x1 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x1)    x1 = Conv2D(48, (3, 3),padding='same')(x1)    x1 = Activation('relu')(x1)    x1 = Conv2D(48, (3, 3),padding='same')(x1)    x1 = Activation('relu')(x1)    x1 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x1)    x1 = Conv2D(64, (3, 3),padding='same')(x1)    x1 = Activation('relu')(x1)    x1 = Conv2D(64, (3, 3),padding='same')(x1)    x1 = Activation('relu')(x1)    x1 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x1)    # the model so far outputs 3D feature maps (height, width, features)    #base_model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors    x1 = Flatten()(x1)    x1 = Dense(256)(x1)    x1 = Activation('relu')(x1)    x1 = Dropout(0.5)(x1)    category_predict1 = Dense(100, activation='softmax', name='category_predict1')(x1)    # Three loss functions#定义三个全连接层            x2 = Conv2D(32, (3, 3),padding='same' )(input2)#input is height,width,deep    x2 = Activation('relu')(x2)    x2 = Conv2D(32, (3, 3),padding='same')(x2)    x2 = Activation('relu')(x2)    x2 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x2)    x2 = Conv2D(48, (3, 3),padding='same')(x2)    x2 = Activation('relu')(x2)    x2 = Conv2D(48, (3, 3),padding='same')(x2)    x2 = Activation('relu')(x2)    x2 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x2)    x2 = Conv2D(64, (3, 3),padding='same')(x2)    x2 = Activation('relu')(x2)    x2 = Conv2D(64, (3, 3),padding='same')(x2)    x2 = Activation('relu')(x2)    x2 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x2)    # the model so far outputs 3D feature maps (height, width, features)    #base_model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors    x2 = Flatten()(x2)    x2 = Dense(256)(x2)    x2 = Activation('relu')(x2)    x2 = Dropout(0.5)(x2)    category_predict2 = Dense(100, activation='relu', name='category_predict2')(x2)            x3 = Conv2D(32, (3, 3),padding='same' )(input3)#input is height,width,deep    x3 = Activation('relu')(x3)    x3 = Conv2D(32, (3, 3),padding='same')(x3)    x3 = Activation('relu')(x3)    x3 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x3)    x3 = Conv2D(48, (3, 3),padding='same')(x3)    x3 = Activation('relu')(x3)    x3 = Conv2D(48, (3, 3),padding='same')(x3)    x3 = Activation('relu')(x3)    x3 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x3)    x3 = Conv2D(64, (3, 3),padding='same')(x3)    x3 = Activation('relu')(x3)    x3 = Conv2D(64, (3, 3),padding='same')(x3)    x3 = Activation('relu')(x3)    x3 = MaxPooling2D(pool_size=(2, 2),strides = (2, 2))(x3)    # the model so far outputs 3D feature maps (height, width, features)    #base_model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors    x3 = Flatten()(x3)    x3 = Dense(256)(x3)    x3 = Activation('relu')(x3)    x3 = Dropout(0.5)(x3)    category_predict3 = Dense(100, activation='relu', name='category_predict3')(x3)        #融合全连接层    merge = Concatenate()([category_predict1,category_predict2,category_predict3])    #定义输出    output = Dense(2,activation='sigmoid', name='output')(merge)        model = Model(inputs=[input1, input2, input3], outputs=[output])        callbacks = [keras.callbacks.TensorBoard(                          log_dir='my_log_dir',                          )]        model.compile(optimizer=Adam(lr=0.001,decay=0.01),                  loss='binary_crossentropy',                    metrics=['accuracy'],                  )        return model,callbacks                    

点击全文阅读


本文链接:http://zhangshiyu.com/post/101444.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1