当前位置:首页 » 《随便一记》 » 正文

C++:List的使用和模拟实现

27 人参与  2024年03月13日 16:21  分类 : 《随便一记》  评论

点击全文阅读


                                                        创作不易,感谢三连!!

一、List的介绍

list的文档介绍

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

要注意的是,list开始就不支持下标访问了,所以要访问都要以迭代器为准

void Print(const list<int>& l){//迭代去区间遍历list<int>::const_iterator it = l.begin();while (it != l.end()){cout << *it << " ";++it;}cout << endl;//范围for遍历for (auto e : l)cout << e << " ";cout << endl;}

二、List的使用注意事项 

博主觉得跟之前vector的基本上差不了多少,如果不会看文档用库里面的list的可以去看博主只管关于string和vector的使用。

C++:String类的使用-CSDN博客 

C++:Vector的使用-CSDN博客

下面直接介绍List使用中的易错点

2.1 List的迭代器失效问题

        我们之前学习vector的时候,知道了insert和erase都有可能存在迭代器失效的问题,那list会出现这种情况吗??下面来进行分析

insert插入新节点的迭代器,因此insert不可能会出现失效的问题。

   而earse必然会失效,因为该迭代器对应的节点被删除了。如果我们想继续用的话,就得利用返回值去更新迭代器,返回值是被删除元素的下一个位置的迭代器。

2.2 List中sort的效率测试

我们用一段代码来测试一下list中sort的性能

void test_op(){srand((unsigned int)time(NULL));const int N = 1000000;vector<int> v;v.reserve(N);list<int> lt1;list<int> lt2;for (int i = 0; i < N; ++i){int e = rand();lt1.push_back(e);lt2.push_back(e);}// 拷贝到vector排序,排完以后再拷贝回来int begin1 = clock();for (auto e : lt1){v.push_back(e);}sort(v.begin(), v.end());size_t i = 0;for (auto& e : lt1){e = v[i++];}int end1 = clock();//list调用自己的sortint begin2 = clock();lt2.sort();int end2 = clock();printf("vector sort:%d\n", end1 - begin1);printf("list sort:%d\n", end2 - begin2);}

 会发现哪怕我先拷贝到vector排完再拷贝回去效率都比list的sort效率高,所以list的sort实际中意义不是很大!!

 三、模拟实现的注意事项

     还是跟之前模拟实现一样,先看看SGI版本的源码 ,list本质上是带头双向链表

第一部分    链表节点

第二部分   迭代器

第三部分、链表

这里我们可以先实现链表节点结构体 这里用sturct把权限放开。

//节点的封装template<class T>struct list_node{list_node<T>* _prev;list_node<T>* _next;T _data;//节点的构造函数list_node(const T& val = T()):_prev(nullptr), _next(nullptr), _data(val){}};

然后封装一个链表,将头结点作为自己的成员变量封装起来

template<class T>class list{typedef list_node<T>  node;//typedef可以帮助我们简洁代码private:node* _head;};

下面开始进行我们的重中之重——迭代器 

四、正向迭代器的实现

2.1 正向迭代器的封装

      在学习Vector的时候,我们发现其实vector的迭代器就是一个原生指针,所以我们将他改了名字

      这得益于vector空间连续的特点,所以对指针进行加和减再进行解引用可以访问到我们想要的元素,但是链表可以吗?

 

     虽然看似我们好像用箭头连接起来了,但其实他们空间上是不连续的,那我们对一个节点指针进行加减,就很难说能不能找到下一个节点,更多的是找不到的情况

    那我们思考一样,如果我们要搞一个迭代器,我们希望怎么去得到我们的数据呢??我们希望我们解引用的时候,可以拿到他的data,希望++的时候,可以拿到他的next,--的时候,可以拿到他的prev。  那我们怎么去改变原生操作符的行为呢?答案就是运算符重载!所以我们可以将迭代器单独封装成一个类去管理节点,改变运算符的行为!!

       我们先进行实现,然后再慢慢分析

//封装迭代器template<class T, class Ref, class Ptr>//Ref用于引用是否const,Ptr用于指针是否conststruct list_iterator{typedef list_node<T> node;typedef list_iterator<T, Ref, Ptr>  self;node* _node;//迭代器的构造函数list_iterator(node* n)//迭代器的构造:_node(n){}//实现*Ref operator*() const{return _node->_data;}//实现->Ptr operator->() const{return &operator*();    //本来是两个->,为了增强可读性,我们封装了这个函数 比如当我们存储的结构体解引用后有多个成员,那么我们可以通过箭头的直线去找到对应我们想要的成员}//前置++self& operator++(){_node = _node->_next;return *this;}//后置++self operator++(int){self temp(*this);++*this;return temp;}//前置--self& operator--(){_node = _node->_prev;return *this;}//后置--self operator--(int){self temp(*this);--*this;return temp;}//!=bool operator!=(const self& s) const{return _node != s._node;}//==bool operator==(const self& s) const{return _node == s._node;}};

第一个模版参数是类型,第二个模版参数是引用,第三个模版参数是指针

       Ref和Ptr是用来区分正常的迭代器和const修饰的迭代器,Ref是T&或者是const T&,这样可以在某些时候我们去限制data不能被修改。而Ptr是T*或者是const T*,重载箭头的作用是如果我们data存储的是一个自定义类型,这个时候如果直接解引用肯定是不行的,所以我们的箭头可以在解引用的时候先返回data的地址,然后我们就可以通过箭头去访问他不同的成员变量。

下面举个data存的是自定义类型的例子

2.2 迭代器的使用

template<class T>class list{typedef list_node<T>  node;//typedef可以帮助我们简洁代码public://正向迭代器typedef list_iterator<T, T&, T*>   iterator;typedef list_iterator<T, const T&, const T*>   const_iterator;//可读可写正向迭代器iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}//可读不可写正向迭代器const_iterator begin() const{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}private:node* _head;};

这边我们用到了匿名对象。

思考:这里的const迭代器为什么不能直接用const修饰普通迭代器??

       因为typedef碰到const的话,就不是简单的字符串替换  实际上你以为的const T* ,在这里变成了T*const ,因为迭代器我们是希望他可以进行++和--的,而我们只是不希望他指向的内容给改变,所以我们的const要修饰的是指针的内容,而不是修饰指针。

五、list相关的成员函数

3.1  构造函数

1、默认构造函数

因为无论如何都要有哨兵节点,所以我们直接封装一个

void empty_init(){_head = new node;_head->_next = _head;_head->_prev = _head;}

所以可以这么写

//默认构造函数list(){empty_init();}

2、有参构造函数

//有参构造函数list(size_t n, const T& val = T()){empty_init();for (size_t i = n; i > 0; --i)push_back(val);}

 3、迭代器区间构造函数

//迭代器区间构造函数template <class InputIterator>list(InputIterator first, InputIterator last){empty_init();while (first != last){push_back(*first);++first;}}

4、拷贝构造的传统写法

传统方法就是一个个拷贝过去

//拷贝构造函数传统写法list(const list<T>& lt){empty_init();for (auto e : lt)push_back(e);}

5、拷贝构造的现代写法+swap

      现代写法就是,我先创建一个临时对象让他利用被拷贝对象的迭代器构造出来,然后再交换,窃取革命成功,被利用完后的临时对象会在栈帧结束后被清除(典型的资本家思维)

//交换函数void swap(list<T>& temp){std::swap(_head, temp._head);}//拷贝构造函数的现代写法list(const list<T>& lt){empty_init();list<T> temp(lt.begin(), lt.end());//复用迭代器区间构造,让别人构造好了,我再窃取革命成果swap(temp);}

3.2 clear和析构函数

    list不像vector一样,不能直接用头指针delete,因为空间不连续,所以要一个个节点去delete,所以在这之前,我们可以先实现clear,clear的作用是把链表清空,只剩一个头节点,然我们的析构函数再复用clear,然后再单独delete头节点就行了!!

//clear 只留一个头节点void clear(){iterator it = begin();while (it != end())it = erase(it);}//析构函数~list(){clear();delete _head;_head = nullptr;}

3.3 赋值重载和assign

       assign和=的本质上都是,先将原来的空间的内容给清空,换成的内容。 只不过区别就是assign可以利用迭代器去控制被替换的范围,也可以自己去换成n个一样的元素。所以我们先实现assign,再实现=

1、assign直接替换

//assign(直接替换)void assign(size_t n, const T& val){clear();for (size_t i = n; i > 0; --i)push_back(val);}

2、assign迭代器区间替换

//assign(迭代器区间替换)template <class InputIterator>void assign(InputIterator first, InputIterator last){clear();while (first != last){push_back(*first);++first;}}

3、assign直接替换重载(防止间接寻址)

思考:我们的本意是将lt2替换成5个2,我们发现我们调的竟然是迭代器区间构造的assign,为什么会这样呢?????     

      因为重载类型会优先找最匹配的,assign的第一个版本的n是size_t类型,我们传的整数默认是int所以会发生强制类型转化,而第二个版本恰好可以变成两个int,所以他会走迭代器区间版本。所以此时有两个方案,第一个方案是我们要在第一个参数后面加u,但是这不符合我们的使用习惯,所以我们可以采用第二个方案,写个重载版本。

//assign重载版本  防止间接寻址void assign(int n, const T& val){clear();for (size_t i = n; i > 0; --i)push_back(val);}

4、赋值重载传统写法 

直接复用assign

// 赋值重载的传统写法list<T>& operator=(const list<T>& lt){assign(lt.begin(), lt.end());return *this;}

5、赋值重载的现代写法

list<T>& operator=(list<T> lt){swap(lt);//利用值传递拷贝的临时对象进行交换return *this;}

3.4 修改相关函数(Modifiers)

1、empty、size

//sizesize_t size() const{size_t n = 0;for (auto e : *this)++n;return n;}//emptybool empty() const{return node->next == node;}

2、insert

我们先实现insert和erase,其他的就可以直接复用了

//insertiterator insert(iterator pos, const T& val){node* cur = pos._node;//记录当前节点node* prev = cur->_prev;//记录前驱节点node* newnode = new node(val);//建立新节点//开始改变指向newnode->_next = cur;cur->_prev = newnode;prev->_next = newnode;newnode->_prev = prev;return iterator(newnode);}

3、erase

//eraseiterator erase(iterator pos){assert(pos != end());//确保不是删除哨兵位置node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);//利用匿名对象返回}

4、尾插尾删头插头删

//pushback 尾插void push_back(const T& val){insert(end(), val);}//pushfront 头插void push_front(const T& val){insert(begin(), val);}//popback 尾删void pop_back(){erase(--end());}//popfront 头删void pop_front(){erase(begin());}

5、resize

//resize  如果n小于当前容量的大小,则内容将减少到前n个元素 当n大于容器大小时,则在末尾插入任意容量的内容。void resize(size_t n, const T& val = T()){size_t sz = size();//记录当前的有效元素的个数while (n < sz){pop_back();--sz;}while (n > sz){push_back(val);++sz;}}

六、反向迭代器的实现

sgi版本下的反向迭代器,其实就是将构建一个反向迭代器的类将正向迭代器封装起来,这个时候正向迭代器的++就是反向迭代器的--

template<class iterator, class Ref, class Ptr>struct list_reverse_iterator{typedef list_reverse_iterator<iterator, Ref, Ptr> self;//用正向迭代器去构造反向迭代器list_reverse_iterator(iterator it):_cur(it){}//解引用Ref operator*() const{iterator temp = _cur;--temp;return *temp;}//实现->Ptr operator->() const{return &operator*();}//前置++self& operator++(){--_cur;return *this;}//后置++self operator++(int){iterator temp(_cur);--*this;return temp;}//前置--self& operator--(){++_cur;return *this;}//后置--self operator--(int){iterator temp(_cur);++*this;return temp;}//不等于bool operator!=(const self& s){return _cur != s._cur;}//等于bool operator==(const self& s){return _cur == s._cur;}iterator _cur;};

思考:为什么解引用的是前一个位置的元素???

通过这个我们来看看vector下的反向迭代器代码:

         复用性很高,和list的区别就是因为是随机迭代器,所以多了+和-的接口,第二个就是不需要->,所以其实模版也可少传一个 

 七、list模拟实现的全部代码

//c++喜欢ListNode驼峰法命名  为了和STL风格一致,我们也用小写//但是STL版本和java喜欢小写带_  namespace cyx{//节点的封装template<class T>struct list_node{list_node<T>* _prev;list_node<T>* _next;T _data;//节点的构造函数list_node(const T& val = T()):_prev(nullptr), _next(nullptr), _data(val){}};//封装迭代器template<class T, class Ref, class Ptr>//Ref用于struct list_iterator{typedef list_node<T> node;typedef list_iterator<T, Ref, Ptr>  self;node* _node;//迭代器的构造函数list_iterator(node* n)//迭代器的构造:_node(n){}//实现*Ref operator*() const{return _node->_data;}//实现->Ptr operator->() const{return &operator*();    //本来是两个->,为了增强可读性,我们封装了这个函数 比如当我们存储的结构体解引用后有多个成员,那么我们可以通过箭头的直线去找到对应我们想要的成员}//前置++self& operator++(){_node = _node->_next;return *this;}//后置++self operator++(int){self temp(*this);++*this;return temp;}//前置--self& operator--(){_node = _node->_prev;return *this;}//后置--self operator--(int){self temp(*this);--*this;return temp;}//!=bool operator!=(const self& s) const{return _node != s._node;}//==bool operator==(const self& s) const{return _node == s._node;}};template<class iterator, class Ref, class Ptr>struct list_reverse_iterator{typedef list_reverse_iterator<iterator, Ref, Ptr> self;//用正向迭代器去构造反向迭代器list_reverse_iterator(iterator it):_cur(it){}//解引用Ref operator*() const{iterator temp = _cur;--temp;return *temp;}//实现->Ptr operator->() const{return &operator*();}//前置++self& operator++(){--_cur;return *this;}//后置++self operator++(int){iterator temp(_cur);--*this;return temp;}//前置--self& operator--(){++_cur;return *this;}//后置--self operator--(int){iterator temp(_cur);++*this;return temp;}//不等于bool operator!=(const self& s){return _cur != s._cur;}//等于bool operator==(const self& s){return _cur == s._cur;}iterator _cur;};template<class T>class list{typedef list_node<T>  node;//typedef可以帮助我们简洁代码public://正向迭代器typedef list_iterator<T, T&, T*>   iterator;typedef list_iterator<T, const T&, const T*>   const_iterator;        //typedef __list_const_iterator<T> const_iterator;不行//反向迭代器typedef list_reverse_iterator<iterator, T&, T*>    reverse_iterator;typedef list_reverse_iterator<iterator, const T&, const T*>  const_reverse_iterator;//可读可写正向迭代器iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}//可读不可写正向迭代器const_iterator begin() const{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}        //可读可写的反向迭代器reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}//可读不可写的反向迭代器const_reverse_iterator rbegin() const{return const_reverse_iterator(end());}const_reverse_iterator rend() const{return const_reverse_iterator(begin());}//默认构造函数list(){empty_init();}//有参构造函数list(size_t n, const T& val = T()){    empty_init();for (size_t i = n; i > 0; --i)push_back(val);}//迭代器区间构造函数template <class InputIterator>list(InputIterator first, InputIterator last){     empty_init();while (first != last){push_back(*first);++first;}}//拷贝构造函数传统写法/*list(const list<T>& lt){empty_init();for (auto e : lt)push_back(e);}*///交换函数void swap(list<T>& temp){std::swap(_head, temp._head);}//拷贝构造函数的现代写法list(const list<T>& lt){empty_init();list<T> temp(lt.begin(), lt.end());//复用迭代器区间构造,让别人构造好了,我再窃取革命成果swap(temp);}//assign(迭代器区间替换)template <class InputIterator>void assign(InputIterator first, InputIterator last){clear();while (first != last){push_back(*first);++first;}}//assign(直接替换)void assign(size_t n, const T& val){clear();for (size_t i = n; i > 0; --i)push_back(val);}//assign重载版本  防止间接寻址void assign(int n, const T& val){clear();for (size_t i = n; i > 0; --i)push_back(val);}// 赋值重载的传统写法list<T>& operator=(const list<T>& lt){assign(lt.begin(), lt.end());return *this;}// 赋值重载的现代写法//list<T>& operator=(list<T> lt)//{//swap(lt);//利用值传递拷贝的临时对象进行交换//return *this;//}//析构函数~list(){clear();delete _head;_head = nullptr;}//sizesize_t size() const{size_t n = 0;for (auto e : *this)++n;return n;}//insertiterator insert(iterator pos, const T& val){node* cur = pos._node;//记录当前节点node* prev = cur->_prev;//记录前驱节点node* newnode = new node(val);//建立新节点//开始改变指向newnode->_next = cur;cur->_prev = newnode;prev->_next = newnode;newnode->_prev = prev;return iterator(newnode);}//eraseiterator erase(iterator pos){assert(pos != end());//确保不是删除哨兵位置node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);//利用匿名对象返回}//pushback 尾插void push_back(const T& val){insert(end(), val);}//pushfront 头插void push_front(const T& val){insert(begin(), val);}//popback 尾删void pop_back(){erase(--end());}//popfront 头删void pop_front(){erase(begin());}//clear 只留一个头节点void clear(){iterator it = begin();while (it != end())it = erase(it);}//resize  如果n小于当前容量的大小,则内容将减少到前n个元素 当n大于容器大小时,则在末尾插入任意容量的内容。void resize(size_t n, const T& val = T()){size_t sz = size();//记录当前的有效元素的个数while (n < sz){pop_back();--sz;}while (n > sz){push_back(val);++sz;}}//emptybool empty() const{return node->next == node;}private:node* _head;//用来初始化  类内部自己用,设私有void empty_init(){_head = new node;_head->_next = _head;_head->_prev = _head;}};

    接口暂时就搞这些,如果后面有时间再写些比较复杂的接口,这一篇不太好理解,讲解不到位还请见谅


点击全文阅读


本文链接:http://zhangshiyu.com/post/78960.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1