当前位置:首页 » 《随便一记》 » 正文

【selenium学习】数据驱动测试

1 人参与  2023年04月12日 16:53  分类 : 《随便一记》  评论

点击全文阅读


数据驱动

在 unittest 中,使用读取数据文件来实现参数化可以吗?当然可以。这里以读取 CSV

文件为例。创建一个 baidu_data.csv 文件,如图所示:

文件第一列为测试用例名称,第二例为搜索的关键字。接下来创建 test_baidu_data.py文件。

# _*_ coding:utf-8 _*_"""name:zhangxingzaidate:2023/3/19"""import csvimport codecsimport unittestfrom time import sleepfrom itertools import islicefrom selenium import webdriverfrom selenium.webdriver.common.by import Byclass TestBaidu(unittest.TestCase):    @classmethod    def setUpClass(cls):        cls.driver = webdriver.Firefox()        cls.base_url = "https://www.baidu.com"    @classmethod    def tearDownClass(cls):        cls.driver.quit()    def baidu_search(self, search_key):        self.driver.get(self.base_url)        self.driver.find_element(By.ID, "kw").send_keys(search_key)        self.driver.find_element(By.ID, "su").click()        sleep(3)    def test_search(self):        with codecs.open('baidu_data.csv', 'r', 'utf_8_sig') as f:            data = csv.reader(f)            for line in islice(data, 1, None):                search_key = line[1]                self.baidu_search(search_key)if __name__ == '__main__':    unittest.main(verbosity=2)

这样做似乎没有问题,确实可以读取 baidu_data.csv 文件中的三条数据并进行测试,测

试结果如下:

根据结果看这样划分并不合理,比如,有 10 条数据,只要有 1 条数据执行失败,那么整个测试用

例就执行失败了。所以,10 条数据对应 10 条测试用例更为合适,就算其中 1 条数据的测

试用例执行失败了,也不会影响其他 9 条数据的测试用例的执行,并且在定位测试用例失

败的原因时会更加简单。修改代码如下:

# _*_ coding:utf-8 _*_"""name:zhangxingzaidate:2023/3/19"""import csvimport codecsimport unittestfrom time import sleepfrom itertools import islicefrom selenium import webdriverfrom selenium.webdriver.common.by import Byclass TestBaidu(unittest.TestCase):    @classmethod    def setUpClass(cls):        cls.driver = webdriver.Firefox()        cls.base_url = "https://www.baidu.com"        cls.test_data = []        with codecs.open('baidu_data.csv', 'r', 'utf_8_sig') as f:            data = csv.reader(f)            for line in islice(data, 1, None):                cls.test_data.append(line)    @classmethod    def tearDownClass(cls):        cls.driver.quit()    def baidu_search(self, search_key):        self.driver.get(self.base_url)        self.driver.find_element(By.ID, "kw").send_keys(search_key)        self.driver.find_element(By.ID, "su").click()        sleep(3)    def test_search_selenium(self):        self.baidu_search(self.test_data[0][1])    def test_search_unittest(self):        self.baidu_search(self.test_data[1][1])    def test_search_parameterized(self):        self.baidu_search(self.test_data[2][1])if __name__ == '__main__':    unittest.main(verbosity=2)

优化后用setUpClass() 方法读取 baidu_data.csv 文件,并将文件中的数据存储到

test_data 数组中。分别创建不同的测试方法使用 test_data 中的数据,测试结果如下:

从测试结果可以看到,3 条数据被当作 3 条测试用例执行了。那么是不是就完美解决

了前面的问题呢?接下来,需要思考一下,读取数据文件带来了哪些问题?

(1)增加了读取的成本。不管什么样的数据文件,在运行自动化测试用例前都需要将

文件中的数据读取到程序中,这一步是不能少的。

(2)不方便维护。读取数据文件是为了方便维护,但事实上恰恰相反。在 CSV 数据文

件中,并不能直观体现出每一条数据对应的测试用例。而在测试用例中通过 test_data[0][1]

方式获取数据也存在很多问题,如果在 CSV 文件中间插入了一条数据,那么测试用例获取

到的测试数据很可能就是错的。

如果在测试过程中需要用很多数据怎么办?我们知道测试脚本并不是用来存放数据的

地方,如果待测试的数据很多,那么全部放到测试脚本中显然并不合适。

在回答这个问题之前,先思考一下什么是 UI 自动化测试?UI 自动化测试是站在用户

的角度模拟用户的操作。那么用户在什么场景下会输入大量的数据呢?其实输入大量数据

的功能很少,如果整个系统都需要用户重复或大量地输入数据,那么很可能是用户体验做

得不好!大多数时候,系统只允许用户输入用户名、密码和个人信息,或搜索一些关键字

等。

假设我们要测试用户发文章的功能,这时确实会用到大量的数据。

那么读取数据文件是不是就完全没必要了呢?当然不是,比如一些自动化测试的配置

就可以放到数据文件中,如运行环境、运行的浏览器等,放到配置文件中会更方便管理。

DDT(Data-Driven Tests)

DDT是针对 unittest 单元测试框架设计的扩展库。允许使用不同的测试数据来运行一个测试用例,并将其展示为多个测试用例。

GitHub 地址:https://github.com/datadriventests/ddt。

DDT 支持 pip 安装。

pip install ddt

以百度搜索为例,来看看 DDT 的用法。创建 test_baidu_ddt.py 文件

# _*_ coding:utf-8 _*_"""name:zhangxingzaidate:2023/3/19"""import unittestfrom time import sleepfrom selenium import webdriverfrom selenium.webdriver.common.by import Byfrom ddt import ddt, data, file_data, unpack@ddtclass TestBaidu(unittest.TestCase):    @classmethod    def setUpClass(cls):        cls.driver = webdriver.Firefox()        cls.base_url = "https://www.baidu.com"    def baidu_search(self, search_key):        self.driver.get(self.base_url)        self.driver.find_element(By.ID, "kw").send_keys(search_key)        self.driver.find_element(By.ID, "su").click()        sleep(3)    # 参数化使用方式一    @data(["case1", "selenium"], ["case2", "ddt"], ["case3", "python"])    @unpack    def test_search1(self, case, search_key):        print("第一组测试用例:", case)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    # 参数化使用方式二    @data(("case1", "selenium"), ("case2", "ddt"), ("case3", "python"))    @unpack    def test_search2(self, case, search_key):        print("第二组测试用例:", case)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    # 参数化使用方式三    @data({"search_key": "selenium"}, {"search_key": "ddt"}, {"search_key": "python"})    @unpack    def test_search3(self, search_key):        print("第三组测试用例:", search_key)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    @classmethod    def tearDownClass(cls):        cls.driver.quit()if __name__ == '__main__':    unittest.main(verbosity=2)

使用 DDT 需要注意以下几点:

首先,测试类需要通过@ddt 装饰器进行装饰。

其次,DDT 提供了不同形式的参数化。这里列举了三组参数化,第一组为列表,第二

组为元组,第三组为字典。需要注意的是,字典的 key 与测试方法的参数要保持一致。

执行结果如下:

DDT 同样支持数据文件的参数化。它封装了数据文件的读取,让我们更专注于数据文

件中的内容,以及在测试用例中的使用,而不需要关心数据文件是如何被读取进来的。

首先,创建 ddt_data_file.json 文件:

{ "case1": {"search_key": "python"}, "case2": {"search_key": "ddt"}, "case3": {"search_key": "Selenium"}}

在测试用例中使用 test_data_file.json 文件参数化测试用例,在 test_baidu_ddt.py 文件中

增加测试用例数据。代码如下:

# _*_ coding:utf-8 _*_"""name:zhangxingzaidate:2023/3/19"""import unittestfrom time import sleepfrom selenium import webdriverfrom selenium.webdriver.common.by import Byfrom ddt import ddt, data, file_data, unpack@ddtclass TestBaidu(unittest.TestCase):    @classmethod    def setUpClass(cls):        cls.driver = webdriver.Firefox()        cls.base_url = "https://www.baidu.com"    def baidu_search(self, search_key):        self.driver.get(self.base_url)        self.driver.find_element(By.ID, "kw").send_keys(search_key)        self.driver.find_element(By.ID, "su").click()        sleep(3)    # 参数化使用方式一    @data(["case1", "selenium"], ["case2", "ddt"], ["case3", "python"])    @unpack    def test_search1(self, case, search_key):        print("第一组测试用例:", case)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    # 参数化使用方式二    @data(("case1", "selenium"), ("case2", "ddt"), ("case3", "python"))    @unpack    def test_search2(self, case, search_key):        print("第二组测试用例:", case)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    # 参数化使用方式三    @data({"search_key": "selenium"}, {"search_key": "ddt"}, {"search_key": "python"})    @unpack    def test_search3(self, search_key):        print("第三组测试用例:", search_key)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    # 参数化读取 JSON 文件    @file_data('ddt_data_file.json')    def test_search4(self, search_key):        print("第四组测试用例:", search_key)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")    @classmethod    def tearDownClass(cls):        cls.driver.quit()if __name__ == '__main__':    unittest.main(verbosity=2)

注意,ddt_data_file.json 文件需要与 test_baidu_ddt.py 放在同一目录下面,否则需要指

定 ddt_data_file.json 文件的路径。

除此之外,DDT 还支持 yaml 格式的数据文件。创建 ddt_data_file.yaml 文件:

case1: - search_key: "python"case2: - search_key: "ddt"case3: - search_key: "unittest"

在 test_baidu_ddt.py 文件中增加测试用例:

以上省略。。。# 参数化读取 yaml 文件    @file_data('ddt_data_file.yaml')    def test_search5(self, case):        search_key = case[0]["search_key"]        print("第五组测试用例:", search_key)        self.baidu_search(search_key)        self.assertEqual(self.driver.title, search_key + "_百度搜索")

这里的取值与上面的 JSON 文件有所不同,因为每一条用例都被解析为[{'search_key':

'python'}],所以要想取到搜索关键字,则需要通过 case[0]["search_key"]的方式获取。

注意:这里有可能读取yaml文件夹失败,程序执行报错,可以安装PyYAML库修复。

pip install PyYAML


点击全文阅读


本文链接:http://zhangshiyu.com/post/59420.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1