当前位置:首页 » 《随便一记》 » 正文

YOLOv7训练自己的数据集(超详细)

15 人参与  2023年04月10日 17:05  分类 : 《随便一记》  评论

点击全文阅读


介绍

2022年7月,YOLOv7来临, 论文链接:https://arxiv.org/abs/2207.02696

代码链接:

GitHub - WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

废话不多说,赶紧上车!

文件配置

1、数据集

自己创建一个myself.yaml文件用来配置路径,路径格式与之前的V5、V6不同,只需要配置txt路径就可以

 train-list.txt和val-list.txt文件里存放的都是图片的绝对路径(也可以放入相对路径)

 如何获取图像的绝对路径,脚本写在下面了(也可以获取相对路径)

# From Mr. Dinosaurimport osdef listdir(path, list_name):  # 传入存储的list    for file in os.listdir(path):        file_path = os.path.join(path, file)        if os.path.isdir(file_path):            listdir(file_path, list_name)        else:            list_name.append(file_path)list_name = []path = 'D:/PythonProject/data/'  # 文件夹路径listdir(path, list_name)print(list_name)with open('./list.txt', 'w') as f:  # 要存入的txt    write = ''    for i in list_name:        write = write + str(i) + '\n'    f.write(write)

2、train.py

官网下载模型文件,train.py文件只支持YOLOv7和YOLOv7-X模型

train文件还是和V5一样,为了方便,我将需要用到的文件放在了根目录下

路径修改完之后右击运行即可

3、train_aux.py

如果你想使用较大的预训练模型,请使用train_aux.py进行训练,否则效果会很差(本人亲测)

下面放上对比图:(上面V7,下面V5)

--weights

下载位置在官网的GitHub上(我是用的是yolov7-d6-training.pt)

--cfg

请使用cfg-training-中的模型文件

 --hyp

文件夹data-hyp.scratch.p6.yaml

 运行train_aux.py

效果对比

在此放上YOLOv7和YOLOv5的对比图:(左V7,右V5)

报错解决

YOLOv7 训练报错 IndexError: list index out of range_Mr Dinosaur的博客-CSDN博客https://blog.csdn.net/qq_58355216/article/details/125842647?spm=1001.2014.3001.5501

 评价

无论是训练的速度、还是精度、召回和map的提升,V7的表现都是十分显著的,称得上是YOLO界的扛把子,期待作者之后的优化和更新。

YOLOv8发布

官网的YOLOv8最近开始发布,效果要比V7更快更准,训练和测试方法已写好,感兴趣的小伙伴快动手操作一下 

YOLOv8训练自己的数据集icon-default.png?t=MBR7https://blog.csdn.net/qq_58355216/article/details/128671030?spm=1001.2014.3001.5501


点击全文阅读


本文链接:http://zhangshiyu.com/post/59194.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1