可以看KDD会议,最新推荐系统论文。
推荐系统概述
传统推荐模型Old school Model
协同过滤模型
通过对用户之间的关系,用户对物品的评价反馈一起对信息进行筛选过滤,从而找到目标用户感兴趣的信息。
用户—商品的评分矩阵(该矩阵很可能是稀疏的)
用户\物品 | |||
---|---|---|---|
x | x | ||
x | x | ||
x | x |
行向量表示每个用户的喜好,列向量表明每个物品的属性
基于评分矩阵(行列)计算相似度,以下是计算相似度的一些方法:
余弦相似度皮尔逊相关系数欧氏距离曼哈顿距离主要有基于用户的协同过滤与基于物品的协同过滤。
矩阵分解模型
矩阵分解为两个低秩的矩阵的乘积,通过分解后的两矩阵内积,来填补缺失的数据。
优点:思路简单,可以方便完成预测;
缺点:很难增量训练(当样本激增时,可能要重新搭建矩阵),特征融合难;
这里k是个隐因子,相当于是一个超参数。
逻辑回归模型
对预测用户是否会“点击商品”进行分类。转成一个分类模型。
ϕ ( x ) = w 0 + w 1 x 1 + ⋯ + w n x n = w 0 + ∑ i = 1 n w i x i \begin{aligned} \phi(x) &=w_{0}+w_{1} x_{1}+\cdots+w_{n} x_{n} \\ &=w_{0}+\sum_{i=1}^{n} w_{i} x_{i} \end{aligned} ϕ(x)=w0+w1x1+⋯+wnxn=w0+i=1∑nwixi
优点:模型简单,可解释性强,训练速度快(SGD梯度下降);
缺点:模型建模能力有限(没有考虑特征之间的相关性,以及特征之间的交叉),需要人工特征工程;
特征交叉模型
PLOY2
ϕ ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n − 1 ∑ j = i + 1 n w i j x i x j \phi(x) = w_{0}+\sum_{i = 1}^{n} w_{i} x_{i}+\sum_{i = 1}^{n-1} \sum_{j = i+1}^{n} w_{i j} x_{i} x_{j} ϕ(x)=w0+∑i=1nwixi+∑i=1n−1∑j=i+1nwijxixj
在逻辑回归基础上加入了暴力二阶特征交叉。
优点:加入二阶特征,建模能力增强;
缺点:时间复杂度高 n − − > n 2 n-->n^2 n−−>n2;
Factorization Machine
ϕ ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n − 1 ∑ j = i + 1 n ⟨ v i , v j ⟩ x i x j \phi(x)=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left\langle v_{i}, v_{j}\right\rangle x_{i} x_{j} ϕ(x)=w0+∑i=1nwixi+∑i=1n−1∑j=i+1n⟨vi,vj⟩xixj
为每个特征加入隐含权重(两个向量之间的内积),作为特征交叉的权重。
优点∶相比于PLOY2降低了模型参数量( n 2 − − > n K n^2-->nK n2−−>nK),自动特征工程
缺点︰特征交叉度有限(二阶)
GBDT+LR
GBDT:作为特征编码器;主要用于输入数据的特征筛选以及特征编码,生成离散的特征向量
LR(逻辑回归)︰利用编码结果进行训练
优点︰灵活,适合新增特征(用树模型作特征组合)
缺点:树模型复杂度高
深度推荐模型
深度协同过滤(Neural CF )
将用户对物品的打分当做分类问题。
使用全连接层学习用户与物品的交互。
用多层的神经网络代替矩阵分解的操作
用全连接网络可能会比乘法更加高效一点。
Wide & Deep
基本淘汰
Wide为线性模型,Deep为深度模型
浅层模型(记忆能力)和深层模型模型(泛化能力),
Wide部分可以记住id,以此做一个建模。类似于LR。
Deep可以视为一个全连接网络,类似于NCF。
DeepFM
DeepFM包含FM和DNN两部分,两部分共享输入特征。使用FM替换wide & Deep中的wide部分。
DeepFM:一阶特征+二阶特征+深度特征
抛弃之前的单Wide部分,用FM代替,加强浅层特征的组合能力,用一阶和二阶替代。
DIN
首个加入Attention机制
根据用户和物品调整权重
推荐系统框架&工具
DeepCTR
https://github.com/shenweichen/DeepCTR
https://github.com/shenweichen/DeepCTR-Torch
https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html
实现了经典的推荐算法模型,支持Keras和Pytroch。
对模型和输出处理封装的比较好,适合比赛用。
xlearn
https://github.com/aksnzhy/xlearn
https://xlearn-doc-cn.readthedocs.io/en/latest/
LR、FM、FFM的高效实现,适合离线建模使用。
RecBole
伯乐,一个统一、全面、高效的推荐系统代码库
https://recbole.io/cn/
支持72个模型,28个数据集,适合学术用途
文本编码方法Text Encoding
Count:统计文本字符个数、单词个数
LabelEncoder:统一进行标签编
Multi One-Hot:进行多值标签编码(例如one-hot编码后相加)
AB : 011 BC : 110 AC : 101
One-Hot:eg:A: 0 0 1 B:010 C:100
CounterVector:与Multi One-Hot,但加入次数统计
TfidfVectorizer: 次数 和 词频统计
Word2Vec:词向量映射,然后聚合