当前位置:首页 » 《随便一记》 » 正文

目标检测数据集之离线数据增强

12 人参与  2023年04月06日 14:52  分类 : 《随便一记》  评论

点击全文阅读


目录

1.数据增强概述

2.目标检测离线数据增强步骤(一定要先看,便于理解过程)

3.数据增强代码

 4.代码运行

5.完整代码

6.结果展示

1.数据增强概述

海量数据是目标检测的基础,而针对于特定场景的数据往往需要自己获取和标注,往往需要耗费大量的人工成本和时间成本。而数据增强则能很好的解决这问题。与简单的数据增强方法不同,目标检测的数据增强不仅要考虑图片的相应转变,还要实现图片内所标注坐标的转换,即目标检测的数据增强既要生成原图片的衍生图片,同时还需生成相应的xml文件(pascal voc数据集为例)。因此目标检测的数据增强与图像分类的数据增强有很大的不同。往往目标检测的数据增强又分为在线数据增强和离线数据增强。大多的目标检测模型都默认带有在线数据增强,通过相关配置文件就能实现,优点是不占用本地内存方便实现,缺点是不够直观。而离线的数据增强则相反。而在刚起步学习阶段,可以通过离线数据增强的方式更直观的感受一下。

2.目标检测离线数据增强步骤(一定要先看,便于理解过程)

第一步针对标注好的数据(pascal voc数据集为例),通过相关python脚本将标注的矩形框画出来,检查标注时的准确性(随机挑选部分图片,可以不用全部照片)。第二步使用几种数据增强方式对图片进行增强,这里主要使用了五种数据增强方法(图像旋转、高斯噪音、改变亮度、裁剪、平移),其中图像旋转有六种旋转角度(60, 90, 120, 150, 180, 270)。并且,在这几种方法中,添加高斯噪音和改变亮度xml文件与原图是相同的。第三步在生成新的图片和xml文件后,与第一步相同验证新生成图像所生成xml文件的准确性。不正确就需要针对具体情况进行调整。在扩充了数据集之后就开始对模型进行训练了。

3.数据增强代码

实现对标注好的数据集进行验证(验证标注情况的实际情况)
import osimport cv2 as cvimport xml.etree.ElementTree as ETdef xml_jpg2labelled(imgs_path, xmls_path, labelled_path):    # k=0    imgs_list = os.listdir(imgs_path)    xmls_list = os.listdir(xmls_path)    nums = len(imgs_list)    for i in range(nums):        # k+=1        img_path = os.path.join(imgs_path, imgs_list[i])        xml_path = os.path.join(xmls_path, xmls_list[i])        img = cv.imread(img_path)        labelled = img        root = ET.parse(xml_path).getroot()        objects = root.findall('object')        for obj in objects:            bbox = obj.find('bndbox')            xmin = int(float(bbox.find('xmin').text.strip()))            ymin = int(float(bbox.find('ymin').text.strip()))            xmax = int(float(bbox.find('xmax').text.strip()))            ymax = int(float(bbox.find('ymax').text.strip()))            labelled = cv.rectangle(labelled, (xmin, ymin), (xmax, ymax), (0, 0, 255), 1)        cv.imwrite('%s%s_labelled.jpg' % (labelled_path, imgs_list[i]), labelled)        # if k>=100:        #     break        # cv.imshow('labelled', labelled)        # cv.imshow('origin', origin)        # cv.waitKey()if __name__ == '__main__':    ## 原图    # imgs_path='D:\MyselfStudy\yolov5-6.0\data\\test\img'#图片所在路径    # xmls_path ='D:\MyselfStudy\yolov5-6.0\data\\test\\xml'#xml所在路径    # labelled_path='D:\MyselfStudy\yolov5-6.0\data\\test\\anchor_imgs\yuan_img\\'#生成带有矩形框图片所在路径    # xml_jpg2labelled(imgs_path, xmls_path, labelled_path)    

原图片生成anchors实验结果

  2.图片增强(均在一个脚本内)

在实现图像增强时,将几种图片增强方法都放入了ImgAugemention这个类中,因此要调用相关方法时需先实例化ImgAugemention这个类。

#相关依赖包import cv2import mathimport numpy as npimport osimport xml.etree.ElementTree as ETimport randomimport xml.dom.minidom as DOCfrom skimage import exposure#ImgAugemention类class ImgAugemention():    def __init__(self, crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5, add_noise_rate=0.5, angle=90):        self.crop_rate = crop_rate        self.shift_rate = shift_rate        self.change_light_rate = change_light_rate        self.add_noise_rate = add_noise_rate        self.angle = angle  # rotate_img

  2.1图像水平旋转

    def rotate_image(self, src, angle, scale=1.):        w = src.shape[1]        h = src.shape[0]        # convet angle into rad        rangle = np.deg2rad(angle)  # angle in radians        # calculate new image width and height        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale        # ask OpenCV for the rotation matrix        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)        # calculate the move from the old center to the new center combined        # with the rotation        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))        # the move only affects the translation, so update the translation        # part of the transform        rot_mat[0, 2] += rot_move[0]        rot_mat[1, 2] += rot_move[1]        # map        return cv2.warpAffine(            src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))),            flags=cv2.INTER_LANCZOS4)    def rotate_xml(self, src, xmin, ymin, xmax, ymax, angle, scale=1.):        w = src.shape[1]        h = src.shape[0]        rangle = np.deg2rad(angle)  # angle in radians        # now calculate new image width and height        # get width and heigh of changed image        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale        # ask OpenCV for the rotation matrix        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)        # calculate the move from the old center to the new center combined        # with the rotation        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))        # the move only affects the translation, so update the translation        # part of the transform        rot_mat[0, 2] += rot_move[0]        rot_mat[1, 2] += rot_move[1]        # rot_mat: the final rot matrix        # get the four center of edges in the initial martix,and convert the coord        point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))        point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))        point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))        point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))        # concat np.array        concat = np.vstack((point1, point2, point3, point4))        # change type        concat = concat.astype(np.int32)        # print(concat)        rx, ry, rw, rh = cv2.boundingRect(concat)        return rx, ry, rw, rh    def process_img(self, imgs_path, xmls_path, img_save_path, xml_save_path, angle_list):        # assign the rot angles        for angle in angle_list:            for img_name in os.listdir(imgs_path):                # split filename and suffix                n, s = os.path.splitext(img_name)                # for the sake of use yolo model, only process '.jpg'                if s == ".jpg":                    img_path = os.path.join(imgs_path, img_name)                    img = cv2.imread(img_path)                    rotated_img = self.rotate_image(img, angle)                    save_name = n + "_" + str(angle) + ".jpg"                    # 写入图像                    cv2.imwrite(img_save_path + save_name, rotated_img)                    # print("log: [%sd] %s is processed." % (angle, img))                    xml_url = img_name.split('.')[0] + '.xml'                    xml_path = os.path.join(xmls_path, xml_url)                    tree = ET.parse(xml_path)                    # file_name = tree.find('filename').text  # it is origin name                    # path = tree.find('path').text  # it is origin path                    # change name and path                    tree.find('filename').text = save_name  # change file name to rot degree name                    # tree.find('path').text = save_name  #  change file path to rot degree name                    root = tree.getroot()# if angle in [90, 270], need to swap width and height                    if angle in [90, 270]:                        d = tree.find('size')                        width = int(d.find('width').text)                        height = int(d.find('height').text)                        # swap width and height                        d.find('width').text = str(height)                        d.find('height').text = str(width)                    for box in root.iter('bndbox'):                        xmin = float(box.find('xmin').text)                        ymin = float(box.find('ymin').text)                        xmax = float(box.find('xmax').text)                        ymax = float(box.find('ymax').text)                        x, y, w, h = self.rotate_xml(img, xmin, ymin, xmax, ymax, angle)                        # change the coord                        box.find('xmin').text = str(x)                        box.find('ymin').text = str(y)                        box.find('xmax').text = str(x+w)                        box.find('ymax').text = str(y+h)                        box.set('updated', 'yes')                    # write into new xml                    tree.write(xml_save_path + n + "_" + str(angle) + ".xml")

2.2增加高斯噪音   

     # 高斯模糊    def addGaussi(self,img_path,xml_path,save_img,save_xml):        xml_save_path=save_xml+'GaussianBlur\\'        img_save_path=save_img+'GaussianBlur\\'        for imgs in os.listdir(img_path):            img = cv2.imread(img_path+imgs)            size = random.choice((5, 9, 11))            Gau_img=cv2.GaussianBlur(img, ksize=(size, size), sigmaX=0, sigmaY=0)            # 写入图像            cv2.imwrite(img_save_path + "Gau_img"+imgs, Gau_img)            xml=xml_path+imgs[:-4]+ ".xml"            tree = ET.parse(xml)            tree.write(xml_save_path + "Gau_img"+imgs[:-4]+ ".xml")

2.4改变亮度

 # 调整亮度    def changeLight(self, img_path,xml_path,save_img,save_xml):        xml_save_path = save_xml +'changeLight'        img_save_path = save_img +'changeLight'        for imgs in os.listdir(img_path):            flag = random.uniform(0.6, 1.3)  # flag>1为调暗,小于1为调亮            img = cv2.imread(img_path+imgs)            light_img=exposure.adjust_gamma(img, flag)            cv2.imwrite(img_save_path +'\\'+ "light_img" + imgs, light_img)            xml = xml_path + imgs[:-4] + ".xml"            tree = ET.parse(xml)            tree.write(xml_save_path + '\\'+"light_img" + imgs[:-4] + ".xml")

2.5平移和裁剪代码

以下时实现平移和裁剪所需的函数,不在ImgAugemention类中,不要将以下这段代码放到ImgAugemention类中。

# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]def parse_xml(xml_path):    '''    输入:        xml_path: xml的文件路径    输出:        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]    '''    tree = ET.parse(xml_path)    root = tree.getroot()    objs = root.findall('object')    coords = list()    for ix, obj in enumerate(objs):        name = obj.find('name').text        box = obj.find('bndbox')        x_min = int(box[0].text)        y_min = int(box[1].text)        x_max = int(box[2].text)        y_max = int(box[3].text)        coords.append([x_min, y_min, x_max, y_max, name])    return coords# 将bounding box信息写入xml文件中, bouding box格式为[[x_min, y_min, x_max, y_max, name]]def generate_xml(img_name, coords, img_size, out_root_path):    '''    输入:        img_name:图片名称,如a.jpg        coords:坐标list,格式为[[x_min, y_min, x_max, y_max, name]],name为概况的标注        img_size:图像的大小,格式为[h,w,c]        out_root_path: xml文件输出的根路径    '''    doc = DOC.Document()  # 创建DOM文档对象    annotation = doc.createElement('annotation')    doc.appendChild(annotation)    title = doc.createElement('folder')    title_text = doc.createTextNode('VOC2007')    title.appendChild(title_text)    annotation.appendChild(title)    title = doc.createElement('filename')    title_text = doc.createTextNode(img_name)    title.appendChild(title_text)    annotation.appendChild(title)    source = doc.createElement('source')    annotation.appendChild(source)    title = doc.createElement('database')    title_text = doc.createTextNode('The VOC2007 Database')    title.appendChild(title_text)    source.appendChild(title)    title = doc.createElement('annotation')    title_text = doc.createTextNode('PASCAL VOC2007')    title.appendChild(title_text)    source.appendChild(title)    size = doc.createElement('size')    annotation.appendChild(size)    title = doc.createElement('width')    title_text = doc.createTextNode(str(img_size[1]))    title.appendChild(title_text)    size.appendChild(title)    title = doc.createElement('height')    title_text = doc.createTextNode(str(img_size[0]))    title.appendChild(title_text)    size.appendChild(title)    title = doc.createElement('depth')    title_text = doc.createTextNode(str(img_size[2]))    title.appendChild(title_text)    size.appendChild(title)    for coord in coords:        object = doc.createElement('object')        annotation.appendChild(object)        title = doc.createElement('name')        title_text = doc.createTextNode(coord[4])        title.appendChild(title_text)        object.appendChild(title)        pose = doc.createElement('pose')        pose.appendChild(doc.createTextNode('Unspecified'))        object.appendChild(pose)        truncated = doc.createElement('truncated')        truncated.appendChild(doc.createTextNode('1'))        object.appendChild(truncated)        difficult = doc.createElement('difficult')        difficult.appendChild(doc.createTextNode('0'))        object.appendChild(difficult)        bndbox = doc.createElement('bndbox')        object.appendChild(bndbox)        title = doc.createElement('xmin')        title_text = doc.createTextNode(str(int(float(coord[0]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('ymin')        title_text = doc.createTextNode(str(int(float(coord[1]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('xmax')        title_text = doc.createTextNode(str(int(float(coord[2]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('ymax')        title_text = doc.createTextNode(str(int(float(coord[3]))))        title.appendChild(title_text)        bndbox.appendChild(title)    # 将DOM对象doc写入文件    f = open(os.path.join(out_root_path, "new_" +  "_" + img_name[:-4] + '.xml'), 'w')    f.write(doc.toprettyxml(indent=''))    f.close()

 平移和裁剪代码

 # 平移    def shift_pic_bboxes(self,xml_path,img_path,img_save_path,save_path_xml):        img_save_path=img_save_path+'shift'        save_path_xml=save_path_xml+'shift'        for xmls in os.listdir(xml_path):            x=xml_path+xmls            coords = parse_xml(x)#读xml文件            img = cv2.imread(img_path+xmls[:-4] + ".jpg")            names = [coord[4] for coord in coords]            bboxes = [coord[:4] for coord in coords]            '''            平移后的图片要包含所有的框            输入:                img:图像array                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max,label],要确保是数值            输出:                shift_img:平移后的图像array                shift_bboxes:平移后的bounding box的坐标list            '''            # ---------------------- 平移图像 ----------------------            w = img.shape[1]            h = img.shape[0]            x_min = w  # 裁剪后的包含所有目标框的最小的框            x_max = 0            y_min = h            y_max = 0            for bbox in bboxes:                x_min = min(x_min, bbox[0])                y_min = min(y_min, bbox[1])                x_max = max(x_max, bbox[2])                y_max = max(y_max, bbox[3])            d_to_left = x_min  # 包含所有目标框的最大左移动距离            d_to_right = w - x_max  # 包含所有目标框的最大右移动距离            d_to_top = y_min  # 包含所有目标框的最大上移动距离            d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离            x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)            y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)            M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上            shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))            # ---------------------- 平移boundingbox ----------------------            shift_bboxes = list()            for bbox in bboxes:                i=0                shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y,names[i]])                i+=1            cv2.imwrite(img_save_path + '\\' + "shift_img" +xmls[:-4] + ".jpg", shift_img)            file=xmls[:-4] + ".jpg"            auged_img=shift_img            auged_bboxes = shift_bboxes            generate_xml(file, auged_bboxes, list(auged_img.shape), save_path_xml)    # 裁剪    def crop_img_bboxes(self,xml_path,img_path,img_save_path,save_path_xml):        '''        裁剪后的图片要包含所有的框        输入:            img:图像array            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max,label],要确保是数值        输出:            crop_img:裁剪后的图像array            crop_bboxes:裁剪后的bounding box的坐标list        '''        # ---------------------- 裁剪图像 ----------------------        img_save_path=img_save_path+'crop'        save_path_xml=save_path_xml+'crop'        for imgs in os.listdir(img_path):            imgPath=img_path+imgs            img=cv2.imread(img_path+imgs)            w = img.shape[1]            h = img.shape[0]            x_min = w  # 裁剪后的包含所有目标框的最小的框            x_max = 0            y_min = h            y_max = 0            xmlPath=xml_path+imgs[:-4] + ".xml"            coords = parse_xml(xmlPath)  # 读xml文件            names = [coord[4] for coord in coords]            bboxes = [coord[:4] for coord in coords]            for bbox in bboxes:                x_min = min(x_min, bbox[0])                y_min = min(y_min, bbox[1])                x_max = max(x_max, bbox[2])                y_max = max(y_max, bbox[3])            d_to_left = x_min  # 包含所有目标框的最小框到左边的距离            d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离            d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离            d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离            # 随机扩展这个最小框            crop_x_min = int(x_min - random.uniform(0, d_to_left))            crop_y_min = int(y_min - random.uniform(0, d_to_top))            crop_x_max = int(x_max + random.uniform(0, d_to_right))            crop_y_max = int(y_max + random.uniform(0, d_to_bottom))            # 确保不要越界            crop_x_min = max(0, crop_x_min)            crop_y_min = max(0, crop_y_min)            crop_x_max = min(w, crop_x_max)            crop_y_max = min(h, crop_y_max)            crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]            # ---------------------- 裁剪boundingbox ----------------------            # 裁剪后的boundingbox坐标计算            crop_bboxes = list()            for bbox in bboxes:                i=0                crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min,names[i]])                i+=1            cv2.imwrite(img_save_path + '\\' + "crop_img" + imgs, crop_img)            auged_img = crop_img            auged_bboxes = crop_bboxes            generate_xml(imgs, auged_bboxes, list(auged_img.shape), save_path_xml)

 4.代码运行

if __name__ == '__main__':    img_aug = ImgAugemention()    #原图像路径    imgs_path='D:\MyselfStudy\yolov5-6.0\data\\test\img\\'    ##原xml文件路径    xmls_path='D:\MyselfStudy\yolov5-6.0\data\\test\\xml\\'    #新生成图像存储路径    save_xml='D:\MyselfStudy\yolov5-6.0\data\\test\\new_xml\\'    ##新生成xml文件存储路径    save_img='D:\MyselfStudy\yolov5-6.0\data\\test\\new_img\\'        #要实现相应图像增强方式,去掉注释即可        #旋转    # angle_list = [60, 90, 120, 150, 180, 270]    # img_aug.process_img(imgs_path, xmls_path, save_img, save_xml, angle_list)    #高斯噪音    # img_aug.addGaussi(imgs_path, xmls_path, save_img, save_xml)    #改变亮度    # img_aug.changeLight(imgs_path, xmls_path, save_img, save_xml)    #平移    # img_aug.shift_pic_bboxes(xmls_path, imgs_path, save_img, save_xml)    #裁剪    img_aug.crop_img_bboxes(xmls_path, imgs_path, save_img, save_xml)

5.完整代码

路径改为自己的即可

import cv2import mathimport numpy as npimport osimport xml.etree.ElementTree as ETimport randomimport xml.dom.minidom as DOCfrom skimage import exposure# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]def parse_xml(xml_path):    '''    输入:        xml_path: xml的文件路径    输出:        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]    '''    tree = ET.parse(xml_path)    root = tree.getroot()    objs = root.findall('object')    coords = list()    for ix, obj in enumerate(objs):        name = obj.find('name').text        box = obj.find('bndbox')        x_min = int(box[0].text)        y_min = int(box[1].text)        x_max = int(box[2].text)        y_max = int(box[3].text)        coords.append([x_min, y_min, x_max, y_max, name])    return coords# 将bounding box信息写入xml文件中, bouding box格式为[[x_min, y_min, x_max, y_max, name]]def generate_xml(img_name, coords, img_size, out_root_path):    '''    输入:        img_name:图片名称,如a.jpg        coords:坐标list,格式为[[x_min, y_min, x_max, y_max, name]],name为概况的标注        img_size:图像的大小,格式为[h,w,c]        out_root_path: xml文件输出的根路径    '''    doc = DOC.Document()  # 创建DOM文档对象    annotation = doc.createElement('annotation')    doc.appendChild(annotation)    title = doc.createElement('folder')    title_text = doc.createTextNode('VOC2007')    title.appendChild(title_text)    annotation.appendChild(title)    title = doc.createElement('filename')    title_text = doc.createTextNode(img_name)    title.appendChild(title_text)    annotation.appendChild(title)    source = doc.createElement('source')    annotation.appendChild(source)    title = doc.createElement('database')    title_text = doc.createTextNode('The VOC2007 Database')    title.appendChild(title_text)    source.appendChild(title)    title = doc.createElement('annotation')    title_text = doc.createTextNode('PASCAL VOC2007')    title.appendChild(title_text)    source.appendChild(title)    size = doc.createElement('size')    annotation.appendChild(size)    title = doc.createElement('width')    title_text = doc.createTextNode(str(img_size[1]))    title.appendChild(title_text)    size.appendChild(title)    title = doc.createElement('height')    title_text = doc.createTextNode(str(img_size[0]))    title.appendChild(title_text)    size.appendChild(title)    title = doc.createElement('depth')    title_text = doc.createTextNode(str(img_size[2]))    title.appendChild(title_text)    size.appendChild(title)    for coord in coords:        object = doc.createElement('object')        annotation.appendChild(object)        title = doc.createElement('name')        title_text = doc.createTextNode(coord[4])        title.appendChild(title_text)        object.appendChild(title)        pose = doc.createElement('pose')        pose.appendChild(doc.createTextNode('Unspecified'))        object.appendChild(pose)        truncated = doc.createElement('truncated')        truncated.appendChild(doc.createTextNode('1'))        object.appendChild(truncated)        difficult = doc.createElement('difficult')        difficult.appendChild(doc.createTextNode('0'))        object.appendChild(difficult)        bndbox = doc.createElement('bndbox')        object.appendChild(bndbox)        title = doc.createElement('xmin')        title_text = doc.createTextNode(str(int(float(coord[0]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('ymin')        title_text = doc.createTextNode(str(int(float(coord[1]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('xmax')        title_text = doc.createTextNode(str(int(float(coord[2]))))        title.appendChild(title_text)        bndbox.appendChild(title)        title = doc.createElement('ymax')        title_text = doc.createTextNode(str(int(float(coord[3]))))        title.appendChild(title_text)        bndbox.appendChild(title)    # 将DOM对象doc写入文件    f = open(os.path.join(out_root_path, "new_" +  "_" + img_name[:-4] + '.xml'), 'w')    f.write(doc.toprettyxml(indent=''))    f.close()class ImgAugemention():    def __init__(self, crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5, add_noise_rate=0.5,                 cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5, angle=90):        self.crop_rate = crop_rate        self.shift_rate = shift_rate        self.change_light_rate = change_light_rate        # self.cutout_rate = cutout_rate        self.add_noise_rate = add_noise_rate        # self.cut_out_length = cut_out_length        # self.cut_out_holes = cut_out_holes        # self.cut_out_threshold = cut_out_threshold        self.angle = angle  # rotate_img    # rotate_img    def rotate_image(self, src, angle, scale=1.):        w = src.shape[1]        h = src.shape[0]        # convet angle into rad        rangle = np.deg2rad(angle)  # angle in radians        # calculate new image width and height        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale        # ask OpenCV for the rotation matrix        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)        # calculate the move from the old center to the new center combined        # with the rotation        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))        # the move only affects the translation, so update the translation        # part of the transform        rot_mat[0, 2] += rot_move[0]        rot_mat[1, 2] += rot_move[1]        # map        return cv2.warpAffine(            src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))),            flags=cv2.INTER_LANCZOS4)    def rotate_xml(self, src, xmin, ymin, xmax, ymax, angle, scale=1.):        w = src.shape[1]        h = src.shape[0]        rangle = np.deg2rad(angle)  # angle in radians        # now calculate new image width and height        # get width and heigh of changed image        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale        # ask OpenCV for the rotation matrix        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)        # calculate the move from the old center to the new center combined        # with the rotation        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))        # the move only affects the translation, so update the translation        # part of the transform        rot_mat[0, 2] += rot_move[0]        rot_mat[1, 2] += rot_move[1]        # rot_mat: the final rot matrix        # get the four center of edges in the initial martix,and convert the coord        point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))        point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))        point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))        point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))        # concat np.array        concat = np.vstack((point1, point2, point3, point4))        # change type        concat = concat.astype(np.int32)        # print(concat)        rx, ry, rw, rh = cv2.boundingRect(concat)        return rx, ry, rw, rh    def process_img(self, imgs_path, xmls_path, img_save_path, xml_save_path, angle_list):        # xml_save_path = xml_save_path + 'rotate\\'        # img_save_path = img_save_path + 'rotate\\'        # assign the rot angles        for angle in angle_list:            for img_name in os.listdir(imgs_path):                # split filename and suffix                n, s = os.path.splitext(img_name)                # for the sake of use yolo model, only process '.jpg'                if s == ".jpg":                    img_path = os.path.join(imgs_path, img_name)                    img = cv2.imread(img_path)                    rotated_img = self.rotate_image(img, angle)                    save_name = n + "_" + str(angle) + ".jpg"                    # 写入图像                    cv2.imwrite(img_save_path +'/'+ save_name, rotated_img)                    # print("log: [%sd] %s is processed." % (angle, img))                    xml_url = img_name.split('.')[0] + '.xml'                    xml_path = os.path.join(xmls_path, xml_url)                    tree = ET.parse(xml_path)                    # file_name = tree.find('filename').text  # it is origin name                    # path = tree.find('path').text  # it is origin path                    # change name and path                    tree.find('filename').text = save_name  # change file name to rot degree name                    # tree.find('path').text = save_name  #  change file path to rot degree name                    root = tree.getroot()# if angle in [90, 270], need to swap width and height                    if angle in [90, 270]:                        d = tree.find('size')                        width = int(d.find('width').text)                        height = int(d.find('height').text)                        # swap width and height                        d.find('width').text = str(height)                        d.find('height').text = str(width)                    for box in root.iter('bndbox'):                        xmin = float(box.find('xmin').text)                        ymin = float(box.find('ymin').text)                        xmax = float(box.find('xmax').text)                        ymax = float(box.find('ymax').text)                        x, y, w, h = self.rotate_xml(img, xmin, ymin, xmax, ymax, angle)                        # change the coord                        box.find('xmin').text = str(x)                        box.find('ymin').text = str(y)                        box.find('xmax').text = str(x+w)                        box.find('ymax').text = str(y+h)                        box.set('updated', 'yes')                    # write into new xml                    tree.write(xml_save_path +'/'+ n + "_" + str(angle) + ".xml")                # print("[%s] %s is processed." % (angle, img_name))        # 高斯模糊    def addGaussi(self,img_path,xml_path,img_save_path,xml_save_path):        # xml_save_path=xml_save_path+'GaussianBlur\\'        # img_save_path=img_save_path+'GaussianBlur\\'        for imgs in os.listdir(img_path):            img = cv2.imread(img_path+'/'+ imgs)            size = random.choice((5, 9, 11))            Gau_img=cv2.GaussianBlur(img, ksize=(size, size), sigmaX=0, sigmaY=0)            # 写入图像            cv2.imwrite(img_save_path +'/'+ "Gau_img"+imgs, Gau_img)            xml=xml_path+'/'+imgs[:-4]+ ".xml"            tree = ET.parse(xml)            tree.write(xml_save_path + "Gau_img"+imgs[:-4]+ ".xml")    # 调整亮度    def changeLight(self, img_path,xml_path,img_save_path,xml_save_path):        # xml_save_path = xml_save_path +'changeLight'        # img_save_path = img_save_path +'changeLight'        for imgs in os.listdir(img_path):            flag = random.uniform(0.6, 1.3)  # flag>1为调暗,小于1为调亮            img = cv2.imread(img_path+'/'+imgs)            light_img=exposure.adjust_gamma(img, flag)            cv2.imwrite(img_save_path +'/'+"light_img" + imgs, light_img)            xml = xml_path+'/' + imgs[:-4] + ".xml"            tree = ET.parse(xml)            tree.write(xml_save_path +'/'+"light_img" + imgs[:-4] + ".xml")    # 平移    def shift_pic_bboxes(self,xml_path,img_path,img_save_path,save_path_xml):        # img_save_path=img_save_path+'shift'        # save_path_xml=save_path_xml+'shift'        for xmls in os.listdir(xml_path):            x=xml_path+'/'+xmls            coords = parse_xml(x)#读xml文件            img = cv2.imread(img_path+'/'+xmls[:-4] + ".jpg")            names = [coord[4] for coord in coords]            bboxes = [coord[:4] for coord in coords]            '''            平移后的图片要包含所有的框            输入:                img:图像array                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max,label],要确保是数值            输出:                shift_img:平移后的图像array                shift_bboxes:平移后的bounding box的坐标list            '''            # ---------------------- 平移图像 ----------------------            w = img.shape[1]            h = img.shape[0]            x_min = w  # 裁剪后的包含所有目标框的最小的框            x_max = 0            y_min = h            y_max = 0            for bbox in bboxes:                x_min = min(x_min, bbox[0])                y_min = min(y_min, bbox[1])                x_max = max(x_max, bbox[2])                y_max = max(y_max, bbox[3])            d_to_left = x_min  # 包含所有目标框的最大左移动距离            d_to_right = w - x_max  # 包含所有目标框的最大右移动距离            d_to_top = y_min  # 包含所有目标框的最大上移动距离            d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离            x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)            y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)            M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上            shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))            # ---------------------- 平移boundingbox ----------------------            shift_bboxes = list()            for bbox in bboxes:                i=0                shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y,names[i]])                i+=1            cv2.imwrite(img_save_path +'/'+ "shift_img" +xmls[:-4] + ".jpg", shift_img)            file=xmls[:-4] + ".jpg"            auged_img=shift_img            auged_bboxes = shift_bboxes            generate_xml(file, auged_bboxes, list(auged_img.shape), save_path_xml)    # 裁剪    def crop_img_bboxes(self,xml_path,img_path,img_save_path,save_path_xml):        '''        裁剪后的图片要包含所有的框        输入:            img:图像array            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max,label],要确保是数值        输出:            crop_img:裁剪后的图像array            crop_bboxes:裁剪后的bounding box的坐标list        '''        # ---------------------- 裁剪图像 ----------------------        # img_save_path=img_save_path+'crop'        # save_path_xml=save_path_xml+'crop'        for imgs in os.listdir(img_path):            imgPath=img_path+imgs            img=cv2.imread(img_path+'/'+imgs)            w = img.shape[1]            h = img.shape[0]            x_min = w  # 裁剪后的包含所有目标框的最小的框            x_max = 0            y_min = h            y_max = 0            xmlPath=xml_path+'/'+imgs[:-4] + ".xml"            coords = parse_xml(xmlPath)  # 读xml文件            names = [coord[4] for coord in coords]            bboxes = [coord[:4] for coord in coords]            for bbox in bboxes:                x_min = min(x_min, bbox[0])                y_min = min(y_min, bbox[1])                x_max = max(x_max, bbox[2])                y_max = max(y_max, bbox[3])            d_to_left = x_min  # 包含所有目标框的最小框到左边的距离            d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离            d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离            d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离            # 随机扩展这个最小框            crop_x_min = int(x_min - random.uniform(0, d_to_left))            crop_y_min = int(y_min - random.uniform(0, d_to_top))            crop_x_max = int(x_max + random.uniform(0, d_to_right))            crop_y_max = int(y_max + random.uniform(0, d_to_bottom))            # 确保不要越界            crop_x_min = max(0, crop_x_min)            crop_y_min = max(0, crop_y_min)            crop_x_max = min(w, crop_x_max)            crop_y_max = min(h, crop_y_max)            crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]            # ---------------------- 裁剪boundingbox ----------------------            # 裁剪后的boundingbox坐标计算            crop_bboxes = list()            for bbox in bboxes:                i=0                crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min,names[i]])                i+=1            cv2.imwrite(img_save_path +'/'+ "crop_img" + imgs, crop_img)            auged_img = crop_img            auged_bboxes = crop_bboxes            generate_xml(imgs, auged_bboxes, list(auged_img.shape), save_path_xml)if __name__ == '__main__':    img_aug = ImgAugemention()    #路径修改为自己的    imgs_path='./weed_cron_data/VOCdevkit/VOC2007/JPEGImages'    xmls_path='./weed_cron_data/VOCdevkit/VOC2007/Annotations'    save_xml='./new/new_xmls'    save_img='./new/new_imgs'    print("start rorate!!!")    angle_list = [60, 90, 120, 150, 180, 270]    img_aug.process_img(imgs_path, xmls_path, save_img, save_xml, angle_list)    print("start addGaussi!!!")    img_aug.addGaussi(imgs_path, xmls_path, save_img, save_xml)    print("start changeLight!!!")    img_aug.changeLight(imgs_path, xmls_path, save_img, save_xml)    print("start shift_pic_bboxes!!!")    img_aug.shift_pic_bboxes(xmls_path, imgs_path, save_img, save_xml)    print("start crop_img_bboxes!!!")    img_aug.crop_img_bboxes(xmls_path, imgs_path, save_img, save_xml)

6.结果展示

anchor_imgs内记录了各种生成方法的anchors图片

 以shift(平移)为例子(原图和平移后的带anchors图片)

 很显然,图像增强后的anchor准确,经得起验证。

最后附上近期实现yolov5模型实现的杂草检测结果(小岑还要继续努力)。 


点击全文阅读


本文链接:http://zhangshiyu.com/post/58636.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1