当前位置:首页 » 《随便一记》 » 正文

基于MobileNetV2主干的DeeplabV3+语义分割实现

20 人参与  2023年04月05日 17:59  分类 : 《随便一记》  评论

点击全文阅读


目录

一. 语义分割的含义

二. DeepLabV3+ 模型

三. 模型整体框架

四. 模型检测效果

五. 代码实现

 六. 源码地址


一. 语义分割的含义

        语义分割是计算机视觉中的基本任务,在语义分割中我们需要将视觉输入分为不同的语义可解释类别,「语义的可解释性」即分类类别在真实世界中是有意义的。例如,我们可能需要区分图像中属于汽车的所有像素,并把这些像素涂成蓝色。

我们将   图像分类,目标检测  和   语义分割 进行对比 可以让我们更好的理解语义分割。
 图像分类:  通过  提取特征,输出 待测图片趋向于某个种类
 目标检测:   通过  提取特征,输出 待测图片中不同物体的位置与种类 
 语义分割:  通过 提取特征, 输出 待测图片的每个像素点的种类

二. DeepLabV3+ 模型

 如上图, Encoder中DCNN部分代表语义分割中的主干网络, 在本文中为轻量网络MobileNetV2
 特征提取分为高层语义提取低层的语义提取两个部分。
        首先 1 x 1 对通道上关联,起了一个全连接的作用,接下来是 3 个空洞卷积,有关空洞卷积参见。pooling ,然后经过 concate 将这些特征图进行组合,随后经过 1x1 卷积来改变通道大小。接下里对于底层特征图首先进行 1x1 卷积进行通道变换,这样可以拿到一些低层特征,在将上面组合变换通道数的特征图进行一次 4 倍上采样得到和低层特征图大小相同特征图后,进行组合后再进行一次 4 倍上采样

三. 模型整体框架

        自2017年mobile net问世之后,研究人员就不断在追求更小,更快,更准的网络模型。在这个过程中,也发现了mobile net存在的问题:1.1.结构简单,mobile net使用类似VGG的结构,这种结构已经被证明不如resnet bottle neck结构;2.depthwise convolution的输出,在relu的作用下,很容易废掉。即输出为0,且无法恢复。针对上述问题,谷歌做了改进,也即是本文的主角,mobile net v2。mobile net v2的主要改进为引入了Inverted residual block和利用线性变换替换relu。

四. 模型检测效果

五. 代码实现

MobileV2 网络代码搭建

import mathimport osimport torchimport torch.nn as nnimport torch.utils.model_zoo as model_zooBatchNorm2d = nn.BatchNorm2d# PW、DW -> https://blog.csdn.net/qq_41895003/article/details/107408390# MobileNet V1、V2、V3 -> https://www.icode9.com/content-4-891085.htmldef conv_bn(inp, oup, stride):    return nn.Sequential(        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),        BatchNorm2d(oup),        nn.ReLU6(inplace=True)    )def conv_1x1_bn(inp, oup):    return nn.Sequential(        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),        BatchNorm2d(oup),        nn.ReLU6(inplace=True)    )# 深度可分离卷积(Depthwise Separable Convolution)# 一层深度卷积(Depthwise Convolution,DW)与一层逐点卷积(Pointwise Convolution,PW)组合# 倒残差结构Block   PW升维 -> DW -> PW降维# 在 深度可分离卷积(DW + PW降维) 前加一层 PW# rate为卷积膨胀系数 若rate>1 则为膨胀卷积(空洞卷积)# nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1,bias=True):class InvertedResidual(nn.Module):    def __init__(self, inp, oup, stride, expand_ratio):        super(InvertedResidual, self).__init__()        self.stride = stride        assert stride in [1, 2]    # assert in 断言, 若stride不在[1, 2]中则报错        hidden_dim = round(inp * expand_ratio)        self.use_res_connect = self.stride == 1 and inp == oup        # --------------------------------------------#        #  深度可分离卷积        #  第一部分:DW, groups = 输出通道数 = 输入通道数, 当group = 1 时 即为普通卷积        #  第二部分:PW, 利用1×1的卷积更改输出通道数        # --------------------------------------------#        if expand_ratio == 1:            self.conv = nn.Sequential(                #--------------------------------------------#                #   进行3x3的逐层卷积,进行跨特征点的特征提取                #--------------------------------------------#                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),                BatchNorm2d(hidden_dim),                nn.ReLU6(inplace=True),                #-----------------------------------#                #   利用1x1卷积进行通道数的调整                #-----------------------------------#                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),                BatchNorm2d(oup),            )        else:            self.conv = nn.Sequential(                #-----------------------------------#                #   利用1x1卷积进行通道数的上升                #-----------------------------------#                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),                BatchNorm2d(hidden_dim),                nn.ReLU6(inplace=True),                #--------------------------------------------#                #   进行3x3的逐层卷积,进行跨特征点的特征提取                #--------------------------------------------#                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),                BatchNorm2d(hidden_dim),                nn.ReLU6(inplace=True),                #-----------------------------------#                #   利用1x1卷积进行通道数的下降                #-----------------------------------#                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),                BatchNorm2d(oup),            )    def forward(self, x):        if self.use_res_connect:            return x + self.conv(x)        else:            return self.conv(x)class MobileNetV2(nn.Module):    def __init__(self, n_class=1000, input_size=224, width_mult=1.):        super(MobileNetV2, self).__init__()        block = InvertedResidual        input_channel = 32        last_channel = 1280        interverted_residual_setting = [            # t, c, n, s            [1, 16, 1, 1], # 256, 256, 32 -> 256, 256, 16            [6, 24, 2, 2], # 256, 256, 16 -> 128, 128, 24   2            [6, 32, 3, 2], # 128, 128, 24 -> 64, 64, 32     4            [6, 64, 4, 2], # 64, 64, 32 -> 32, 32, 64       7            [6, 96, 3, 1], # 32, 32, 64 -> 32, 32, 96            [6, 160, 3, 2], # 32, 32, 96 -> 16, 16, 160     14            [6, 320, 1, 1], # 16, 16, 160 -> 16, 16, 320        ]        assert input_size % 32 == 0        input_channel = int(input_channel * width_mult)        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel        # 512, 512, 3 -> 256, 256, 32        # 对应 nets/nets.jpg中的MobilenetV2表中的第一个Conv2d        self.features = [conv_bn(3, input_channel, 2)]        for t, c, n, s in interverted_residual_setting:            output_channel = int(c * width_mult)            # 每一个blocks中包括 n个残差block, 第一个block的步长为s, 剩下的为1            for i in range(n):                if i == 0:                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))                else:                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))                input_channel = output_channel        self.features.append(conv_1x1_bn(input_channel, self.last_channel))        self.features = nn.Sequential(*self.features)        self.classifier = nn.Sequential(            nn.Dropout(0.2),            nn.Linear(self.last_channel, n_class),        )        self._initialize_weights()    def forward(self, x):        x = self.features(x)        x = x.mean(3).mean(2)        x = self.classifier(x)        return x    # isinstance(x, y)判断x , y是否时相同类型 ,返回bool类型    # 例如:设置一个条件,如果m为Conv2d层就为该m添加相应的参数    def _initialize_weights(self):        for m in self.modules():            if isinstance(m, nn.Conv2d):                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels                m.weight.data.normal_(0, math.sqrt(2. / n))                if m.bias is not None:                    m.bias.data.zero_()            elif isinstance(m, BatchNorm2d):                m.weight.data.fill_(1)                m.bias.data.zero_()            elif isinstance(m, nn.Linear):                n = m.weight.size(1)                m.weight.data.normal_(0, 0.01)                m.bias.data.zero_()def load_url(url, model_dir='./model_data', map_location=None):    if not os.path.exists(model_dir):        os.makedirs(model_dir)    filename = url.split('/')[-1]    cached_file = os.path.join(model_dir, filename)    if os.path.exists(cached_file):        return torch.load(cached_file, map_location=map_location)    else:        return model_zoo.load_url(url,model_dir=model_dir)def mobilenetv2(pretrained=False, **kwargs):    model = MobileNetV2(n_class=1000, **kwargs)    if pretrained:        model.load_state_dict(load_url('https://github.com/bubbliiiing/deeplabv3-plus-pytorch/releases/download/v1.0/mobilenet_v2.pth.tar'), strict=False)    return modelif __name__ == "__main__":    model = mobilenetv2()    for i, layer in enumerate(model.features):        print(i, layer)

DeepLabV3 + 网络代码搭建

import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetV2 import mobilenetv2class MobileNetV2(nn.Module):    def __init__(self, downsample_factor=8, pretrained=True):        super(MobileNetV2, self).__init__()        from functools import partial        model = mobilenetv2(pretrained)        # res = [0, 1, 2, 3, 4]        # print(res[:-1])        # out:[0, 1, 2, 3]        self.features = model.features[:-1]        # [2, 4, 7, 14]  代表的是  self.features 中层的位置        self.total_idx = len(self.features)        self.down_idx = [2, 4, 7, 14]        if downsample_factor == 8:            for i in range(self.down_idx[-2], self.down_idx[-1]):                self.features[i].apply(                    partial(self._nostride_dilate, dilate=2)                )            for i in range(self.down_idx[-1], self.total_idx):                self.features[i].apply(                    partial(self._nostride_dilate, dilate=4)                )        elif downsample_factor == 16:            for i in range(self.down_idx[-1], self.total_idx):                self.features[i].apply(                    partial(self._nostride_dilate, dilate=2)                )    #  dilate 膨胀系数    def _nostride_dilate(self, m, dilate):        classname = m.__class__.__name__        if classname.find('Conv') != -1:            if m.stride == (2, 2):                m.stride = (1, 1)                if m.kernel_size == (3, 3):                    m.dilation = (dilate // 2, dilate // 2)                    m.padding = (dilate // 2, dilate // 2)            else:                if m.kernel_size == (3, 3):                    m.dilation = (dilate, dilate)                    m.padding = (dilate, dilate)    def forward(self, x):        low_level_features = self.features[:4](x)        x = self.features[4:](low_level_features)        return low_level_features, x    # -----------------------------------------##   ASPP特征提取模块#   利用不同膨胀率的膨胀卷积进行特征提取# -----------------------------------------#class ASPP(nn.Module):    def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):        super(ASPP, self).__init__()        self.branch1 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch2 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=6 * rate, dilation=6 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch3 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch4 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=18 * rate, dilation=18 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True)        self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)        self.branch5_relu = nn.ReLU(inplace=True)        self.conv_cat = nn.Sequential(            nn.Conv2d(dim_out * 5, dim_out, 1, 1, padding=0, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )    def forward(self, x):        [b, c, row, col] = x.size()        # -----------------------------------------#        #   一共五个分支        # -----------------------------------------#        conv1x1 = self.branch1(x)        conv3x3_1 = self.branch2(x)        conv3x3_2 = self.branch3(x)        conv3x3_3 = self.branch4(x)        # -----------------------------------------#        #   第五个分支,全局平均池化+卷积        # -----------------------------------------#        global_feature = torch.mean(x, 2, True)        global_feature = torch.mean(global_feature, 3, True)        global_feature = self.branch5_conv(global_feature)        global_feature = self.branch5_bn(global_feature)        global_feature = self.branch5_relu(global_feature)        global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)        # -----------------------------------------#        #   将五个分支的内容堆叠起来        #   然后1x1卷积整合特征        # -----------------------------------------#        feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)        # 对应 nets.jpg中 encoder 右侧的 1x1 Covn        # 利用1x1卷积调整通道数        # 52, 52, 1280 -> 52,52,256        result = self.conv_cat(feature_cat)        return resultclass DeepLab(nn.Module):    def __init__(self, num_classes, backbone="mobilenet", pretrained=False, downsample_factor=16):        super(DeepLab, self).__init__()        if backbone == "xception":            # ----------------------------------#            #   获得两个特征层            #   浅层特征    [128,128,256]            #   主干部分    [30,30,2048]            # ----------------------------------#            self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)            in_channels = 2048            low_level_channels = 256        elif backbone == "mobilenet":            # ----------------------------------#            #   获得两个特征层            #   浅层特征    [128,128,24]            #   主干部分    [30,30,320]            # ----------------------------------#            self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)            in_channels = 320            low_level_channels = 24        else:            raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))        # -----------------------------------------#        #   ASPP特征提取模块        #   利用不同膨胀率的膨胀卷积进行特征提取        # -----------------------------------------#        self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16 // downsample_factor)        # ----------------------------------#        #   浅层特征边        # ----------------------------------#        self.shortcut_conv = nn.Sequential(            nn.Conv2d(low_level_channels, 48, 1),            nn.BatchNorm2d(48),            nn.ReLU(inplace=True)        )        self.cat_conv = nn.Sequential(            nn.Conv2d(48 + 256, 256, 3, stride=1, padding=1),            nn.BatchNorm2d(256),            nn.ReLU(inplace=True),            nn.Dropout(0.5),            nn.Conv2d(256, 256, 3, stride=1, padding=1),            nn.BatchNorm2d(256),            nn.ReLU(inplace=True),            nn.Dropout(0.1),        )        self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)    def forward(self, x):        H, W = x.size(2), x.size(3)        # -----------------------------------------#        #   获得两个特征层        #   low_level_features: 浅层特征-进行卷积处理        #   x : 主干部分-利用ASPP结构进行加强特征提取        # -----------------------------------------#        low_level_features, x = self.backbone(x)        #  mobilenetV2 返回的主干特征 进行aspp 对应nets.jpg中的 encoder        #  注意返回的 主干特征是 进行到 5个层堆叠为止, 未进行后续操作        x = self.aspp(x)        #  mobilenetV2 返回的浅层特征 进行1x1的conv  对应nets.jpg中的 decoder中左侧的那个conv        low_level_features = self.shortcut_conv(low_level_features)        # -----------------------------------------#        #   将加强特征边上采样        #   与浅层特征堆叠后利用卷积进行特征提取        #   interpolate()  插值函数, 进行上/下采样处理 , 其中的 size 代表是输出后的 shape        # -----------------------------------------#        x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear',                          align_corners=True)        # 对应nets.jpg中的 decoder中的那个Concat        # 48, 128, 128  + 256, 128, 128 -> 304, 128, 128        # 304, 128, 128 -> 256, 128, 128        x = self.cat_conv(torch.cat((x, low_level_features), dim=1))        # 256, 128, 128 -> 2, 128, 128        x = self.cls_conv(x)        # 2, 128, 128 -> 2, 512, 512        # 将分类好的特征举证 resize成原图尺寸大小 的 特征        x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)        return x

 六. 源码地址

GitHub - mcuwangzaiacm/MobileV2_DeepLabV3plus_pytorch1.2: 这是一个基于MobileV2主干的DeepLabV3plus语义分割模型基础代码,用于入门学习


点击全文阅读


本文链接:http://zhangshiyu.com/post/58518.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1