系列文章
手把手教你:玩转图像分类和目标检测系统
手把手教你:图像识别的垃圾分类系统
手把手教你:基于粒子群优化算法(PSO)优化卷积神经网络(CNN)的文本分类
一、项目简介
本文主要介绍如何使用python搭建:一个基于深度学习的滚动轴承故障诊断系统
项目中涉及使用了多种方法对比检测结果,包括:
传统机器学习方法:随机森林深度学习方法:CNN增加残差模块后的深度学习方法:CNN+ResBlock如各位童鞋需要更换训练数据,完全可以根据源码将图像和标注文件更换即可直接运行。
博主也参考过网上故障检测的相关文章,但大多是理论大于方法。很多同学肯定对原理不需要过多了解,只需要搭建出一个基于深度学习的轴承故障预测系统即可。
也正是因为我发现网上大多的帖子只是针对原理进行介绍,功能实现的相对很少。
如果您有以上想法,那就找对地方了!
不多废话,直接进入正题!
二、数据介绍
本次项目的数据是使用的凯斯西储大学(Case Western Reserve University)轴承数据中心的开源数据集。
数据文件采用Matlab格式。每个文件都包含风扇和驱动端振动数据以及电机转速。对于所有文件,变量名称中的以下项表示:
DE - 驱动端加速计数据FE - 风扇端加速计数据BA - 基础加速计数据time - 时间序列数据RPM- 测试期间的转速2.1 故障类型图示
2.2 数据图示
2.3 查看单个数据文件情况
2.4 数据分布情况
博主对:
正常内圈故障外圈故障滚动体故障四种不同情况下轴承的数据分布进行了可视化展示,由于图示较多,这里只展示内圈故障的一个文件的数据分布情况,其他情况感兴趣的同学可以下载完整代码运行看看。
三、数据预处理
通过可视化观察发现数据波长周期基本上为100-200左右,博主这边使用1000作为采样长度,对所有轴承数据进行采样,并构建label。我们这次需要学习并预测的是输入的轴承数据是为:正常、内圈故障、外圈故障、滚动体故障。中哪一类,因此是一个4分类的任务。处理后数据分布如下:
正常样本:1696个内圈故障样本:1455个滚动体故障样本:1457个外圈故障样本: 1457个然后对数据进行采样,保证每类数据1400个。
data_train = np.asarray(data_normal[:1400] + data_inner[:1400] + data_ball[:1400] + data_outer[:1400],dtype = 'float64')label = np.asarray(label_normal[:1400] + label_inner[:1400] + label_ball[:1400] + label_outer[:1400],dtype = 'int64')print("处理后样本shape:",data_train.shape)print("处理后数据类别分布:",Counter(label))# 保存数据np.save("train_data/train_data.npy",data_train)np.save("train_data/label.npy",label)print("数据保存成功,位置:/train_data/")
四、模型训练及评估
4.1 加载数据
def load_data(): # 读取数据 x = np.load('train_data/train_data.npy') y = np.load('train_data/label.npy') num = len(Counter(y)) print("类别数量为:", num) return x, y, num # 读取数据data, label, label_count = load_data()# 生成训练集测试集,70%用作训练,30%用作测试train_data, train_label, val_data, val_label = create_train_data(data, label, 0.7)print("*"*10)print("训练集数量:",len(train_label))print("测试集数量:",len(val_label))
4.2 随机森林
# 模型参数设置rfc = RandomForestClassifier(n_estimators = 50,min_samples_split = 5,min_samples_leaf = 4,max_depth = 5)# 模型准确率和损失值acc_list = []loss_list = []train_acc_list = []print("开始训练")for i in range(1,epoch +1): # 模型训练 rfc.fit(m_train,train_label) # # 训练集 # y_train = rfc.predict(m_train) # 测试集 y_pred = np.asarray(rfc.predict(m_val),dtype = 'int64') # 计算准确率 acc = round(accuracy_score(val_label, y_pred),3) # 训练集 y_pred = np.asarray(rfc.predict(m_train),dtype = 'int64') # 计算准确率 train_acc = round(accuracy_score(train_label, y_pred),3) # print('测试集准确率:', round(accuracy_score(val_label, y_pred),3)) acc_list.append(acc) train_acc_list.append(train_acc) # 计算损失值 # 使用one-hot编码计算损失值 noe_hot = OneHotEncoder(sparse = False) y_pred_o = noe_hot.fit_transform(y_pred.reshape(1, -1)) val_label_o = noe_hot.fit_transform(val_label.reshape(1, -1))# loss = round(log_loss(val_label_o,y_pred_o),3) # print("loss:",round(log_loss(val_label,y_pred),3))# loss_list.append(loss) print("完成第",i,"轮训练,测试集准确率:",acc)
4.2.1 模型训练
4.2.2 模型测试
4.3 CNN
构建一个CNN网络,结构如下:
4.3.1 模型训练
4.3.2 模型测试
可以看到,使用原始cnn模型训练后准确率只有83。类标2即“内圈故障”的召回率较低,无法准确有效识别。
4.4 CNN+ResBlock
模型构建:
import n_model as mdimport tensorflow as tf# 模型参数model_param = { "a_shape": 1000, "b_shape": 2, "label_count": 4, "num_b":5}data_shape=(model_param['a_shape'],model_param['b_shape'])# 模型实例化model = md.CNN_ResNet_model(model_param['label_count'] , model_param['num_b'] , data_shape=data_shape)# 使用学习率进行训练res_model = model.model_create(learning_rate = 1e-4)# 模型网络结构print("实例化模型成功,网络结构如下:")print(res_model.summary())# 设置模型log输出地址log_dir = os.path.join("logs/ResNet")if not os.path.exists(log_dir): os.mkdir(log_dir)
4.4.1 模型训练
4.4.2 模型测试
可以看到,增加了残差模块的CNN网络已经能准确对不同故障类型进行分类,准确率和召回率均在95分以上。
五、完整代码地址
由于项目代码量和数据集较大,感兴趣的同学可以下载完整代码,使用过程中如遇到任何问题可以在评论区评论或者私信我,我都会一一解答。
完整代码下载:
【代码分享】手把手教你:基于深度学习的滚动轴承故障诊断