当前位置:首页 » 《随便一记》 » 正文

【yolov5】将标注好的数据集进行划分(附完整可运行python代码)

3 人参与  2023年04月03日 19:15  分类 : 《随便一记》  评论

点击全文阅读


问题描述

准备使用yolov5训练自己的模型,自己将下载的开源数据集按照自己的要求重新标注了一下,然后现在对其进行划分。

问题分析

划分数据集主要的步骤就是,首先要将数据集打乱顺序,然后按照一定的比例将其分为训练集,验证集和测试集。
这里我定的比例是7:1:2。

步骤流程

1、将数据集打乱顺序

数据集有图片和标注文件,我们需要把两种文件绑定然后将其打乱顺序。
首先读取数据后,将两种文件通过zip函数绑定

each_class_image = []    each_class_label = []    for image in os.listdir(file_path):        each_class_image.append(image)    for label in os.listdir(xml_path):        each_class_label.append(label)    data=list(zip(each_class_image,each_class_label))

然后打乱顺序,再将两个列表分开

    random.shuffle(data)    each_class_image,each_class_label=zip(*data)

2、按照确定好的比例将两个列表元素分割

分别用三个列表储存一下图片和标注文件的元素

train_images = each_class_image[0:int(train_rate * total)]    val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]    test_images = each_class_image[int((train_rate + val_rate) * total):]        train_labels = each_class_label[0:int(train_rate * total)]    val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]    test_labels = each_class_label[int((train_rate + val_rate) * total):]

3、在本地生成文件夹,将划分好的数据集分别保存

这样就保存好了。

    for image in train_images:        #print(image)        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'train' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in train_labels:        #print(label)        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in val_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'val' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in val_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in test_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'test' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in test_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)

运行结果展示

直接运行单个python文件即可。
在这里插入图片描述
运行完毕
去本地查看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图片和标注文件乱序,且一一对应。

完整代码分享

import osimport shutilimport randomrandom.seed(0)def split_data(file_path,xml_path, new_file_path, train_rate, val_rate, test_rate):    each_class_image = []    each_class_label = []    for image in os.listdir(file_path):        each_class_image.append(image)    for label in os.listdir(xml_path):        each_class_label.append(label)    data=list(zip(each_class_image,each_class_label))    total = len(each_class_image)    random.shuffle(data)    each_class_image,each_class_label=zip(*data)    train_images = each_class_image[0:int(train_rate * total)]    val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]    test_images = each_class_image[int((train_rate + val_rate) * total):]    train_labels = each_class_label[0:int(train_rate * total)]    val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]    test_labels = each_class_label[int((train_rate + val_rate) * total):]    for image in train_images:        print(image)        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'train' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in train_labels:        print(label)        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in val_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'val' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in val_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in test_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'test' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in test_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)if __name__ == '__main__':    file_path = "D:/Files/dataSet/drone_images"    xml_path = 'D:/Files/dataSet/drone_labels'    new_file_path = "D:/Files/dataSet/droneData"    split_data(file_path,xml_path, new_file_path, train_rate=0.7, val_rate=0.1, test_rate=0.2)

点击全文阅读


本文链接:http://zhangshiyu.com/post/58248.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1