目录
一、基础补充
二、什么是DES算法
(1)对称加密算法
(2)非对称加密算法
(3)对称加密算法的应用
三、DES算法的基础操作步骤
1.明文的加密整体过程
2.F轮函数解析
3.密钥的形成过程
四、AC代码
五、DES算法的测试
六、共勉
一、基础补充
在实现DES算法时,需要掌握对二进制数的了解,例如:源码、反码、补码,位操作等,如果有不懂的朋友可以先去看看我对二进制数的理解,再来看DES算法,会更加容易。
源码、反码、补码:http://t.csdn.cn/Osuf2
位操作,例如:按位与、按位或、按位异或、按位左移、按位右移等:http://t.csdn.cn/YQ60C
我的参考视频:
DES加密算法|密码学|信息安全_哔哩哔哩_bilibili
二、什么是DES算法
(1)对称加密算法
1. 通信的双方同时掌握一个密钥,加密解密都是由一个密钥完成的(加密密钥等于解密密钥)。
2. 双方通信前共同拟定一个密钥,不对第三方公开。
3. 不具有个体原子性,一个密钥被共享,泄露几率会大大增加。
(2)非对称加密算法
1.在非对称加密中,不再只有一个密钥Key了。在非对称加密算法中,密钥被分解为一对,一个称为公开密钥,另一个称为私有密钥。对于公钥,可以通过非保密方式向他人公开,而私钥则由解密方保密,不对别人公开。
(3)对称加密算法的应用
1. DES算法是对称加密算法的代表,虽然现在已经很好实现,但是对于研究其改进的方法,有很重大的影响。
2. 在DES算法中由于大部分原始数据较长,首先需要将数据切成64位的明文分组,所以DES算法也叫做分组加密算法。
3. 在DES算法中使用的密钥位64位,其中有效的密钥长度其实只有56位(分成8块每块长为8位,每隔8位设置左后一位为校验位,采用就奇偶校验法)。
4. 在DES算法中加密的明文较长,需要对DES加密进行16轮的函数循环迭代。
三、DES算法的基础操作步骤
由于DES算法过于复杂,我将它分为3大步:
(1)明文的加密的整体过程
(2)F轮函数解析
(3)密钥的形成过程
1.明文的加密整体过程
(1) 输入64bit的明文进行IP置换,分成左右两个分支各为32bit, 左边:32bitL0,右边:32bitR0
(2) 右分支:L1 = R0 左分支:引入48bit 的密钥,R1=L0 异或 f(R0,K1)
(3) 相同的操作进行16次的运算循环,算出相应的,R1~R16,L0~L16
(4)最后在进行IP的逆序置换,将左右两个分支再次合并为64bit密文
(5)将上述的说法,汇聚成流程图,方便大家理解
(6)整体的操作代码:
string wen(string wenBinary[], int num){ int i, j; string ipWenBinary[100]; //保存明文 string left[17], right[17], temp, result; //分为左右两个分支 for (i = 0; i < num; i++) { temp = ""; //一个暂存明文的字符串 //进行IP置换 for (j = 0; j < 64; j++) //明文为64bit { temp += wenBinary[i][ipTable[j] - 1]; } ipWenBinary[i] = temp; } //进行左右分支,分为left:L0,,,right:R0 for (i = 0; i < num; i++) { left[0] = ipWenBinary[i].substr(0, 32); right[0] = ipWenBinary[i].substr(32, 32); // for (j = 0; j < 16; j++) //进行16次循环 { left[j + 1] = right[j]; // left: L1 = R0 //加密和解密的区别 // flag 为全局变量 if (flag == 1) // flage = 1进行加密,否则进行解密 right[j + 1] = xorAB(left[j], f(right[j], k[j])); else //倒着进行解密 right[j + 1] = xorAB(left[j], f(right[j], k[15 - j])); } temp = right[j] + left[j]; //经过16轮加密/解密,将左右32bit合并 //将加密后的密文进行最后的置换,实际上和初始置换是对称的~! //每块的加密结果都和在result中,加密可以直接输出比特流 // 进行IP的逆置换 for (j = 0; j < 64; j++) { result += temp[ipReverseTable[j] - 1]; } } //解密结果输出的是字符 if (flag == 2) { string ch; for (i = 0; i < num * 8; i++) //一个模块是8个bit { ch += binaryToInt(result.substr(8 * i, 8)); //每8bit进行一次二进制转整型 } result = ch; } return result;}
(7)在以上的操作都是在进行二进制数、整数、字符转换,操作代码如下:
//字符转二进制string charToBinary(char c){ int i, b = c, k = 0, flag = 0; string result; //负数就是中文字符 if (b < 0) { b = -b; flag = 1; } //英文字符转换成ASCII的倒序,所以后面需要进行逆序 while (k < 8) //这里的8表示char是1个字节=8bit { if (b) //这里将ASCII里的字符转换为二进制 { result += ((b % 2) + '0'); // 其中这里+'0',表示将数字转换为字符 b /= 2; } else result += '0'; k++; } //汉字字符处理 if (flag)//判断是否为汉字 { for (i = 0; i < result.length(); i++) //此时因为是负数,源码、反码、补码不相等,需要置换 { if (result[i] == '0') result[i] = '1'; // 反码:最高最不变,其它的0->1,,1->0 else result[i] = '0'; } for (i = 0; result[i] != '0'; i++) { result[i] = '0'; //补码 :反码加+1 } result[i] = '1'; } reverse(result.begin(), result.end()); //将结果逆序,成为最终的二进制 return result;}//二进制转整型int binaryToInt(string s){ int i, result = 0, p = 1; for (i = s.length() - 1; i >= 0; i--) { result += ((s[i] - '0') * p); //数字字符转成字符 p *= 2; } return result;}//整型转二进制string intToBinary(int i){ int k = 0; string result; while (k < 4) //此处,处理进入S盒后取出的数据转为2进制,此处最多用4bit { if (i) { result += ((i % 2) + '0'); i /= 2; } else result += '0'; k++; } reverse(result.begin(), result.end()); return result;}
2.F轮函数解析
F轮函数是整个DES算法的核心其中包括:
(1)IP置换
(2)E扩展:将32bit的R0扩展为48bit的R0,其中扩展图为:
(3)异或:将48bit的R0于48bit的K1进行异或
(4)S盒压缩处理 :大盒子里有8块6bit 的小盒子,刚好容纳48bit的二进制数,盒子的特点是6进4出,出了盒子就变成了32bit的二进制数,举例:
(5)IP逆序置换
其中F轮函数的执行代码如下图所示:
//f函数string f(string right, string k) //其中right 为明文的右分支R0--R16,k当前加密轮密钥{ int i, temp; string extendBinary, result, b0; //extendBinary用来存放E扩展32bit~48bit的内容 string b[8], row, col; string b8, pb; for (i = 0; i < 48; i++) { extendBinary += right[extendTable[i] - 1]; } b0 = xorAB(extendBinary, k);//扩展后的内容与此轮密钥异或操作并将结果存入b0中 for (i = 0; i < 8; i++) //将b0的内容分成八份,每份六bit,为进入S盒做准备 { b[i] = b0.substr(i * 6, 6); } for (i = 0; i < 8; i++) { //6bit的第一位和第六位作为行坐标 row = b[i].substr(0, 1) + b[i].substr(5, 1); //6bit的第二至五位作为纵坐标 col = b[i].substr(1, 4); //进行查表 temp = sBox[i][binaryToInt(row)][binaryToInt(col)]; //转到b8中合并----48bit压缩到32bit b[i] = intToBinary(temp); b8 += b[i]; } //进行P盒置换 for (i = 0; i < 32; i++) { pb += b8[pTable[i] - 1]; } //f轮函数结束,返回pb return pb;}
3.密钥的形成过程
(1)密钥原本为64bit ,去掉8位校验位,剩余56位参与运算
(2)按照交换规则,生成16位48bit的轮密钥
其中密钥生成的流程图和代码如下图:
void miyao(){ int i, j; string miyao, miyaoBinary, pc1MiyaoBinary; string c[17], d[17], temp, pc2Temp; cout << "请输入密钥:"; while (cin >> miyao) { if (miyao.length() < 9) break; else cout << "密钥不能超过8位,请重新输入:"; } for (i = 0; i < miyao.length(); i++) { miyaoBinary += charToBinary(miyao[i]); } //密钥长度不足64bit,补'0' //64位中,只有56位参与运算,其中8位为校验位 while (miyaoBinary.length() % 64 != 0) { miyaoBinary += '0'; } //从64bit密钥中依据PC-1盒子取出56bit for (i = 0; i < 56; i++) { pc1MiyaoBinary += miyaoBinary[pc1Table[i] - 1]; } //56bit分成左右两部分 // 左右两部分都为28bit c[0] = pc1MiyaoBinary.substr(0, 28); d[0] = pc1MiyaoBinary.substr(28, 28); 产生16轮加密需要的密钥,存入全局变量k[]中 for (i = 1; i <= 16; i++) { //根据循环移位表,确定生成该轮密钥移位数目 c[i] = c[i - 1].substr(loopTable[i - 1], 28 - loopTable[i - 1]) + c[i - 1].substr(0, loopTable[i - 1]); d[i] = d[i - 1].substr(loopTable[i - 1], 28 - loopTable[i - 1]) + d[i - 1].substr(0, loopTable[i - 1]); //移位后将其合并 temp = c[i] + d[i]; pc2Temp = ""; // 通过PC2成为48bit密钥 for (j = 0; j < 48; j++) { pc2Temp += temp[pc2Table[j] - 1]; } k[i - 1] = pc2Temp;//从1`16 }}
四、AC代码
(1)先建立一个#include "DES.h"的头文件,放入需要的函数
#pragma once#include<iostream>#include<cstdio>#include<string>#include<algorithm>using namespace std;//字符转二进制string charToBinary(char c);//二进制转整型int binaryToInt(string s);//整型转二进制string intToBinary(int i);//异或运算string xorAB(string a, string b);//f函数string f(string right, string k);//明文/密文处理string wen(string wenBinary[], int num);//密钥处理void miyao();//DES 算法测试void DES();
(2)在建立DES.cpp,写出头文件中对应的函数操作
#define _CRT_SECURE_NO_WARNINGS 1#include "DES.h"//进行标记选择int flag;string k[16]; //16轮密钥存储//PC1选位表int pc1Table[56] ={ 57,49,41,33,25,17,9,1, 58,50,42,34,26,18,10,2, 59,51,43,35,27,19,11,3, 60,52,44,36,63,55,47,39, 31,23,15,7,62,54,46,38, 30,22,14,6,61,53,45,37, 29,21,13,5,28,20,12,4};//左移位数表int loopTable[16] ={ 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};//PC2选位表int pc2Table[48] ={ 14,17,11,24,1,5, 3,28,15,6,21,10, 23,19,12,4,26,8, 16,7,27,20,13,2, 41,52,31,37,47,55, 30,40,51,45,33,48, 44,49,39,56,34,53, 46,42,50,36,29,32};//置换IP表int ipTable[64] ={ 58,50,42,34,26,18,10,2, 60,52,44,36,28,20,12,4, 62,54,46,38,30,22,14,6, 64,56,48,40,32,24,16,8, 57,49,41,33,25,17,9,1, 59,51,43,35,27,19,11,3, 61,53,45,37,29,21,13,5, 63,55,47,39,31,23,15,7};//E扩展置换表int extendTable[48] ={ 32,1,2,3,4,5, 4,5,6,7,8,9, 8,9,10,11,12,13, 12,13,14,15,16,17, 16,17,18,19,20,21, 20,21,22,23,24,25, 24,25,26,27,28,29, 28,29,30,31,32,1};//S盒int sBox[8][4][16] ={ //S1 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7, 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8, 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0, 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13, //S2 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10, 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5, 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15, 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9, //S3 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8, 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1, 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7, 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12, //S4 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15, 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9, 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4, 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14, //S5 2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9, 14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6, 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14, 11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3, //S6 12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11, 10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8, 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6, 4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13, //S7 4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1, 13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6, 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2, 6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12, //S8 13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7, 1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2, 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8, 2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11};//P换位表int pTable[32] ={ 16,7,20,21, 29,12,28,17, 1,15,23,26, 5,18,31,10, 2,8,24,14, 32,27,3,9, 19,13,30,6, 22,11,4,25};//逆置换IP^-1表int ipReverseTable[64] = { 40,8,48,16,56,24,64,32, 39,7,47,15,55,23,63,31, 38,6,46,14,54,22,62,30, 37,5,45,13,53,21,61,29, 36,4,44,12,52,20,60,28, 35,3,43,11,51,19,59,27, 34,2,42,10,50,18,58,26, 33,1,41,9,49,17,57,25};//将输入的东西全部看成字符//字符转二进制string charToBinary(char c){ int i, b = c, k = 0, flag = 0; string result; //负数就是中文字符 if (b < 0) { b = -b; flag = 1; } //英文字符转换成ASCII的倒序,所以后面需要进行逆序 while (k < 8) //这里的8表示char是1个字节=8bit { if (b) //这里将ASCII里的字符转换为二进制 { result += ((b % 2) + '0'); // 其中这里+'0',表示将数字转换为字符 b /= 2; } else result += '0'; k++; } //汉字字符处理 if (flag)//判断是否为汉字 { for (i = 0; i < result.length(); i++) //此时因为是负数,源码、反码、补码不相等,需要置换 { if (result[i] == '0') result[i] = '1'; // 反码:最高最不变,其它的0->1,,1->0 else result[i] = '0'; } for (i = 0; result[i] != '0'; i++) { result[i] = '0'; //补码 :反码加+1 } result[i] = '1'; } reverse(result.begin(), result.end()); //将结果逆序,成为最终的二进制 return result;}//二进制转整型int binaryToInt(string s){ int i, result = 0, p = 1; for (i = s.length() - 1; i >= 0; i--) { result += ((s[i] - '0') * p); //数字字符转成字符 p *= 2; } return result;}//整型转二进制string intToBinary(int i){ int k = 0; string result; while (k < 4) //此处,处理进入S盒后取出的数据转为2进制,此处最多用4bit { if (i) { result += ((i % 2) + '0'); i /= 2; } else result += '0'; k++; } reverse(result.begin(), result.end()); return result;}//异或运算string xorAB(string a, string b){ int i; string result; for (i = 0; i < a.length(); i++) { //+'0':表示数字转化为数字字符 result += (((a[i] - '0') ^ (b[i] - '0')) + '0'); // -'0':表示数字字符转化为数字 } return result;}//f函数string f(string right, string k) //其中right 为明文的右分支R0--R16,k当前加密轮密钥{ int i, temp; string extendBinary, result, b0; //extendBinary用来存放E扩展32bit~48bit的内容 string b[8], row, col; string b8, pb; for (i = 0; i < 48; i++) { extendBinary += right[extendTable[i] - 1]; } b0 = xorAB(extendBinary, k);//扩展后的内容与此轮密钥异或操作并将结果存入b0中 for (i = 0; i < 8; i++) //将b0的内容分成八份,每份六bit,为进入S盒做准备 { b[i] = b0.substr(i * 6, 6); } for (i = 0; i < 8; i++) { //6bit的第一位和第六位作为行坐标 row = b[i].substr(0, 1) + b[i].substr(5, 1); //6bit的第二至五位作为纵坐标 col = b[i].substr(1, 4); //进行查表 temp = sBox[i][binaryToInt(row)][binaryToInt(col)]; //转到b8中合并----48bit压缩到32bit b[i] = intToBinary(temp); b8 += b[i]; } //进行P盒置换 for (i = 0; i < 32; i++) { pb += b8[pTable[i] - 1]; } //f轮函数结束,返回pb return pb;}//明文/密文处理string wen(string wenBinary[], int num){ int i, j; string ipWenBinary[100]; //保存明文 string left[17], right[17], temp, result; //分为左右两个分支 for (i = 0; i < num; i++) { temp = ""; //一个暂存明文的字符串 //进行IP置换 for (j = 0; j < 64; j++) //明文为64bit { temp += wenBinary[i][ipTable[j] - 1]; } ipWenBinary[i] = temp; } //进行左右分支,分为left:L0,,,right:R0 for (i = 0; i < num; i++) { left[0] = ipWenBinary[i].substr(0, 32); right[0] = ipWenBinary[i].substr(32, 32); // for (j = 0; j < 16; j++) //进行16次循环 { left[j + 1] = right[j]; // left: L1 = R0 //加密和解密的区别 // flag 为全局变量 if (flag == 1) // flage = 1进行加密,否则进行解密 right[j + 1] = xorAB(left[j], f(right[j], k[j])); else //倒着进行解密 right[j + 1] = xorAB(left[j], f(right[j], k[15 - j])); } temp = right[j] + left[j]; //经过16轮加密/解密,将左右32bit合并 //将加密后的密文进行最后的置换,实际上和初始置换是对称的~! //每块的加密结果都和在result中,加密可以直接输出比特流 // 进行IP的逆置换 for (j = 0; j < 64; j++) { result += temp[ipReverseTable[j] - 1]; } } //解密结果输出的是字符 if (flag == 2) { string ch; for (i = 0; i < num * 8; i++) //一个模块是8个bit { ch += binaryToInt(result.substr(8 * i, 8)); //每8bit进行一次二进制转整型 } result = ch; } return result;}//密钥处理void miyao(){ int i, j; string miyao, miyaoBinary, pc1MiyaoBinary; string c[17], d[17], temp, pc2Temp; cout << "请输入密钥:"; while (cin >> miyao) { if (miyao.length() < 9) break; else cout << "密钥不能超过8位,请重新输入:"; } for (i = 0; i < miyao.length(); i++) { miyaoBinary += charToBinary(miyao[i]); } //密钥长度不足64bit,补'0' //64位中,只有56位参与运算,其中8位为校验位 while (miyaoBinary.length() % 64 != 0) { miyaoBinary += '0'; } //从64bit密钥中依据PC-1盒子取出56bit for (i = 0; i < 56; i++) { pc1MiyaoBinary += miyaoBinary[pc1Table[i] - 1]; } //56bit分成左右两部分 // 左右两部分都为28bit c[0] = pc1MiyaoBinary.substr(0, 28); d[0] = pc1MiyaoBinary.substr(28, 28); 产生16轮加密需要的密钥,存入全局变量k[]中 for (i = 1; i <= 16; i++) { //根据循环移位表,确定生成该轮密钥移位数目 c[i] = c[i - 1].substr(loopTable[i - 1], 28 - loopTable[i - 1]) + c[i - 1].substr(0, loopTable[i - 1]); d[i] = d[i - 1].substr(loopTable[i - 1], 28 - loopTable[i - 1]) + d[i - 1].substr(0, loopTable[i - 1]); //移位后将其合并 temp = c[i] + d[i]; pc2Temp = ""; // 通过PC2成为48bit密钥 for (j = 0; j < 48; j++) { pc2Temp += temp[pc2Table[j] - 1]; } k[i - 1] = pc2Temp;//从1`16 }}// 输出函数void DES(){ int i, j, num; string wenString, wenBinary[100], temp; while (1) { cout << "----------------------------------------------" << endl; cout << "***** 请选择所需功能: *****" << endl; cout << "***** 1. 加密 *****" << endl; cout << "***** 2. 解密 *****" << endl; cout << "***** 0.退出程序 *****"<< endl; cout << "----------------------------------------------" << endl; cin >> flag; if (!flag) break; else if ((flag != 1) && (flag != 2)) { cout << "输入不合法,请重新输入!" << endl << endl; continue; } num = 0; miyao(); getchar(); switch (flag) { case 1: cout << "请输入明文:"; getline(cin, wenString);//输入明文 //将明文转成二进制 for (i = 0; i < wenString.length(); i++) { temp += charToBinary(wenString[i]); //字符每满8bit为一组,最后一组可以不满8bit,后面会补0 if (((i + 1) % 8 == 0) || (((i + 1) % 8 != 0) && (i == wenString.length() - 1))) { wenBinary[num++] = temp; temp = ""; } } //最后一组不满64位就补零,补的零,一定是八的整数倍,二进制00000000为null空字符,不输出 while (wenBinary[num - 1].length() % 64 != 0) { wenBinary[num - 1] += '0'; } cout << "加密结果为(二进制):" << wen(wenBinary, num) << endl << endl; break; case 2: cout << "请输入密文(二进制):"; cin >> wenString; for (i = 0; i * 64 < wenString.length(); i++) { wenBinary[num++] = wenString.substr(i * 64, 64); } cout << "解密结果为(字符):" << wen(wenBinary, num) << endl << endl; break; case 3: exit(0); default : cout << "输入错误,请重新输入" << endl; } }}
(3)最后在test.c中测试就可以啦!
#define _CRT_SECURE_NO_WARNINGS 1#include "DES.h"void menu(){ cout << "**********************************************" << endl; cout << "**********************************************" << endl; cout << "***********欢迎来到DES加密测试系统************" << endl; cout << "**********************************************" << endl; cout << "**********************************************" << endl;}int main(){ menu(); DES(); return 0;}
五、DES算法的测试
六、共勉
这篇就是我对DES加密解密算法的理解,如果有不懂或者有问题的小伙伴可以在评论区里说出来哦,我们一起加油哦!!!