当前位置:首页 » 《随便一记》 » 正文

正则表达式

12 人参与  2023年03月15日 08:01  分类 : 《随便一记》  评论

点击全文阅读


什么是正则化?

Regularization,中文翻译过来可以称为正则化,或者是规范化。什么是规则?闭卷考试中不能查书,这就是规则,一个限制。同理,在这里,规则化就是说给损失函数加上一些限制,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀!

为什么需要正则化?

我们首先回顾一下模型训练的过程,模型参数的训练实际上就是一个不断迭代,寻找到一个方程 image_16fa5290.png 来拟合数据集。然而到这里,我们只知道需要去拟合训练集,但拟合的最佳程度我们并没有讨论过。看看下面回归模型的拟合程度,看看能发现什么。

image_9e8b8029.png

最左边的图中,拟合程度比较低,显然这样的 image_f972fd69.png 并不是我们想求的。连训练集的准确率如此低,那么测试集肯定也不高,也就是模型的泛化能力不高。

最右边的图中,拟合程度非常高,甚至每一个点都能通过 image_5fd4d5e4.png 表达,这个难道就是我们所渴望得到的 image_30d73bd1.png 吗?并不是!我们的数据集中无法避免的存在着许多噪声,而在理想情况下,我们希望噪声对我们的模型训练的影响为0。而如果模型将训练集中每一个点都精准描述出来,显然包含了许许多多噪声点,在后续的测试集中得到的准确率也不高。另一方面,太过复杂的 image_09046fde.png 直接导致函数形状并不平滑,而会像图中那样拐来拐去,并不能起到预测的作用,“回归”模型也丧失了其预测能力(也就是模型泛化能力),显然这也不是我们想要的。

中间的图中,展现的是最适合的拟合程度,image_c9faa798.png 不过于复杂或过于简单,并且能够直观的预测函数的走向。虽然它在测试集的中准确列不及图三高,但在测试集中我们得到的准确率是最高的,同时泛化能力也是最强的。

同样,在分类模型中也存在过拟合与欠拟合的情况。

image_4efd3891.png

总结一下:

欠拟合:泛化能力差,训练样本集准确率低,测试样本集准确率低。过拟合:泛化能力差,训练样本集准确率高,测试样本集准确率低。合适的拟合程度:泛化能力强,训练样本集准确率高,测试样本集准确率高

欠拟合原因:

训练样本数量少模型复杂度过低参数还未收敛就停止循环

欠拟合的解决办法:

增加样本数量增加模型参数,提高模型复杂度增加循环次数查看是否是学习率过高导致模型无法收敛

过拟合原因:

数据噪声太大特征太多模型太复杂

过拟合的解决办法:

清洗数据减少模型参数,降低模型复杂度增加惩罚因子(正则化),保留所有的特征,但是减少参数的大小(magnitude)。

通过分析,我们可以看出,正则化是用来防止模型过拟合而采取的手段。我们对代价函数增加一个限制条件,限制其较高次的参数大小不能过大。还是使用回归模型举例子:

image_280d8d03.png

正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了,因此,我们对代价函数 image_4ceb63f9.png 进行修改如下:

image_88de9b98.png

我们在方程中增加了两个限制条件,分别对 image_8b19d8d3.pngimage_e4264778.png 进行限制,不能让他们过高。很直观的看出,要想使 image_d28729a9.png 最小化,不仅仅需要 image_a2469774.png 足够拟合 image_16740988.png,同时还需要减少 image_0ffc9f67.pngimage_5208d1fc.png

一方面要使得L(w)的取值最小,必然w的绝对值会取到很大,这样模型才能完美拟合训练样本点;另一方面,当w的绝对值很大时,||w||的值又会变得很大,因此为了权衡,只有使得w取值适当,才能保证值取到最优。这样得到的拟合曲线平滑很多,因此具有泛化能力。这就是正则化存在的意义,能帮助我们在训练模型的过程中,防止模型过拟合。

怎么对模型做正则化?

我们对前面的讨论进行推广。假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。于是,我们分析 线性回归模型 的代价函数和 Logistic回归模型 的代价函数如何修改。

线性回归:

image_d9530ad9.png

则修改梯度下降过程:

image_f07d0def.png

逻辑回归:

image_d055f576.png

则修改对应梯度下降过程:

image_ba2a4fc0.png

其中 image_a2fa1e96.png 称为正则化参数(Regularization Parameter),当参数越大,则对其惩罚(规范)的力度也就越大,越能起到规范的作用。但是要注意,image_ab3537f3.png 并不是越大越好的!如果选择的正则化参数 image_27d2a482.png 大,则会把所有的参数都最小化了,导致模型变成 image_7c5a00fd.png,造成欠拟合。因此,我们对 image_5d9cabf5.png 的选取需要合理即可。

不同的正则项?

可能会有小伙伴提出疑问了,为什么正则项带了个平方呢?那我们来分析一下不同次方下的正则项。我们以一次和二次为例,正则项的图分别是一个矩形和圆形,如图:

image_21f8182a.png

那这有什么关系呢?我们把代价函数(包括正则项)整个画出来就知道了。

image_508aec33.png

可以直观的理解为,我们最小化损失函数就是求蓝圈+红圈的和的最小值,而这个值通在很多情况下是两个曲面相交的地方。

可以看到二次正则项的优势,处处可导,方便计算。

L2 正则化

image_daef2ae7.png

式中,image_134085a6.pngimage_4d4d846c.png 的2范式,平方是为了求解的方便。

L2正则化对于绝对值较大的权重予以很重的惩罚,对于绝对值很小的权重予以非常非常小的惩罚,当权重绝对值趋近于0时,基本不惩罚。这个性质与L2的平方项有关系,即越大的数,其平方越大,越小的数,比如小于1的数,其平方反而越小。

同时,他有另一个优势,在使用正规方程时,解析式中的逆始终存在的。

image_024c1b48.png

L1正则化

随着海量数据处理的兴起,工程上对于模型稀疏化的要求也随之出现了。这时候,L2正则化已经不能满足需求,因为它只是使得模型的参数值趋近于0,而不是等于0,这样就无法丢掉模型里的任何一个特征,因此无法做到稀疏化。这时,L1的作用随之显现。L1正则化的作用是使得大部分模型参数的值等于0,这样一来,当模型训练好后,这些权值等于0的特征可以省去,从而达到稀疏化的目的,也节省了存储的空间,因为在计算时,值为0的特征都可以不用存储了。

image_b656a565.png

式中,image_585aaef2.pngimage_7c8da95b.png 的1范式。

L1正则化对于所有权重予以同样的惩罚,也就是说,不管模型参数的大小,对它们都施加同等力度的惩罚,因此,较小的权重在被惩罚后,就会变成0。因此,在经过L1正则化后,大量模型参数的值变为0或趋近于0,当然也有一部分参数的值飙得很高。由于大量模型参数变为0,这些参数就不会出现在最终的模型中,因此达到了稀疏化的作用,这也说明了L1正则化自带特征选择的功能,这一点十分有用。

L1正则化和L2正则化在实际应用中的比较

L1在确实需要稀疏化模型的场景下,才能发挥很好的作用并且效果远胜于L2。在模型特征个数远大于训练样本数的情况下,如果我们事先知道模型的特征中只有少量相关特征(即参数值不为0),并且相关特征的个数少于训练样本数,那么L1的效果远好于L2。然而,需要注意的是,当相关特征数远大于训练样本数时,无论是L1还是L2,都无法取得很好的效果。


点击全文阅读


本文链接:http://zhangshiyu.com/post/55095.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1