当前位置:首页 » 《随便一记》 » 正文

chatGPT都可以干什么呢?来一睹风采 (送账号)

9 人参与  2023年02月17日 10:43  分类 : 《随便一记》  评论

点击全文阅读


文章目录

1. 写代码2. 写文案3. 写剧本4. 写歌诗5. 写报告6. 查公式7. 写对联8. 写文章9. 做表格10. 做计划11. 等等

1. 写代码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 写文案

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. 写剧本

在这里插入图片描述
在这里插入图片描述

4. 写歌诗

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 写报告

在这里插入图片描述
这妥妥的翻译文,数据完全不对。
在这里插入图片描述
在这里插入图片描述

6. 查公式

在这里插入图片描述
傅里叶变换的时域性质有如下几点:

对称性: F ( f ( t ) ) = F ( f ( − t ) ) ∗ \mathcal{F}(f(t)) = \mathcal{F}(f(-t))^* F(f(t))=F(f(−t))∗

循环卷积: F ( f ( t ) ∗ g ( t ) ) = F ( f ( t ) ) ⋅ F ( g ( t ) ) \mathcal{F}(f(t)\ast g(t)) = \mathcal{F}(f(t)) \cdot \mathcal{F}(g(t)) F(f(t)∗g(t))=F(f(t))⋅F(g(t))

时间平移: F ( f ( t − t 0 ) ) = e − j 2 π f 0 t 0 F ( f ( t ) ) \mathcal{F}(f(t-t_0)) = e^{-j2\pi f_0t_0} \mathcal{F}(f(t)) F(f(t−t0​))=e−j2πf0​t0​F(f(t))

时间拓展: F ( α f ( t ) ) = 1 ∣ α ∣ F ( f ( t α ) ) \mathcal{F}(\alpha f(t)) = \frac{1}{|\alpha|} \mathcal{F}(f(\frac{t}{\alpha})) F(αf(t))=∣α∣1​F(f(αt​))

时间反转: F ( f ( − t ) ) = F ( f ( t ) ) ∗ \mathcal{F}(f(-t)) = \mathcal{F}(f(t))^* F(f(−t))=F(f(t))∗

以上是傅里叶变换的时域性质,其中, F \mathcal{F} F 表示傅里叶变换, f ( t ) f(t) f(t) 和 g ( t ) g(t) g(t) 是时域信号, ∗ \ast ∗ 表示循环卷积, ∗ ^* ∗ 表示复共轭, f 0 f_0 f0​ 是信号的频率, t 0 t_0 t0​ 是时间平移量, α \alpha α 是时间拓展量。
在这里插入图片描述
设原始的两个高斯分布分别为 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x),每个分布的平均值分别为 μ 1 \mu_1 μ1​ 和 μ 2 \mu_2 μ2​,标准差分别为 σ 1 \sigma_1 σ1​ 和 σ 2 \sigma_2 σ2​。
那么两个高斯分布相加后的结果为:
f ( x ) + g ( x ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 + 1 2 π σ 2 e − ( x − μ 2 ) 2 2 σ 2 2 f(x) + g(x) = \frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} + \frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} f(x)+g(x)=2π ​σ1​1​e−2σ12​(x−μ1​)2​+2π ​σ2​1​e−2σ22​(x−μ2​)2​通过简单的数学计算,得到这个结果的平均值 μ \mu μ 和标准差 σ \sigma σ 为:
μ = μ 1 σ 2 2 + μ 2 σ 1 2 σ 1 2 + σ 2 2 \mu = \frac{\mu_1\sigma_2^2 + \mu_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2} μ=σ12​+σ22​μ1​σ22​+μ2​σ12​​ σ = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \sigma = \sqrt{\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}} σ=σ12​+σ22​σ12​σ22​​ ​
在这里插入图片描述
用 f ( t ) f(t) f(t) 表示门函数,用 g ( t ) g(t) g(t) 表示辛格函数,卷积的结果为: ( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ (f*g)(t)=\int_{-\infty}^\infty f(\tau)g(t-\tau)d\tau (f∗g)(t)=∫−∞∞​f(τ)g(t−τ)dτ由于 f ( t ) f(t) f(t) 是一个门函数,其具有以下形式: f ( t ) = { 1 , t ∈ [ − 1 2 , 1 2 ]   0 , t ∉ [ − 1 2 , 1 2 ] f(t)=\begin{cases} 1, & t\in[-\frac{1}{2},\frac{1}{2}] \ 0, & t\notin[-\frac{1}{2},\frac{1}{2}] \end{cases} f(t)={1,​t∈[−21​,21​] 0,​t∈/[−21​,21​]​ g ( t ) g(t) g(t) 是一个辛格函数,其具有以下形式: g ( t ) = sinc ( t ) = sin ⁡ ( π t ) π t g(t)=\text{sinc}(t)=\frac{\sin(\pi t)}{\pi t} g(t)=sinc(t)=πtsin(πt)​代入卷积的结果中: ( f ∗ g ) ( t ) = ∫ − 1 2 1 2 sin ⁡ ( π ( t − τ ) ) π ( t − τ ) d τ (f*g)(t)=\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{\sin(\pi (t-\tau))}{\pi (t-\tau)}d\tau (f∗g)(t)=∫−21​21​​π(t−τ)sin(π(t−τ))​dτ因为 sin ⁡ \sin sin 函数的周期性,可以得到: ( f ∗ g ) ( t ) = 1 π ∫ − 1 2 1 2 sin ⁡ ( π t ) t − τ d τ (f*g)(t)=\frac{1}{\pi}\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{\sin(\pi t)}{t-\tau}d\tau (f∗g)(t)=π1​∫−21​21​​t−τsin(πt)​dτ以上是卷积的结果,具体的数值可以用其他方法来计算,如变量变换或数学公式的计算。

7. 写对联

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. 写文章

写文章这块有个问题就是,生成英文的话不管多少字都可以直接给出,而中文就非常受限。
在这里插入图片描述
在这里插入图片描述

9. 做表格

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

10. 做计划

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11. 等等


点击全文阅读


本文链接:http://zhangshiyu.com/post/53316.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

最新文章

  • (此去经年无故人)南初陆南城:结局+番外精品选集起点章节+阅读即将发布预订
  • 沈凝夏叶晚怡附加完整在线阅读(归雁不栖故人枝)最近更新列表
  • 剧情人物是时初,白浩雄的玄幻言情小说《召诸神,踏万界,天命帝女逆乾坤》,由网络作家&ldquo;海鸥&rdquo;所著,情节扣人心弦,本站TXT全本,欢迎阅读!本书共计381345字,185章节,:结局+番外免费品鉴:结局+番外评价五颗星
  • 凤青禾,江明远,***枢小说(别人修仙我捡漏,卷王们破防了)最近更新(凤青禾,江明远,***枢)整本无套路阅读
  • 薛梨小说无删减+后续(曾经亲情似草芥)畅享阅读
  • 沈南栀小说(穿越时空,我要修补时空裂缝)章节目录+起点章节(沈南栀)全篇清爽版在线
  • 未婚妻被巨蟒缠身,我该吃就吃该喝就喝前言+后续_阿豪林月周然后续+番外_小说后续在线阅读_无删减免费完结_
  • 陆骁,陆本初小说(陆骁,陆本初)(癫!睁眼穿成老太太挥鞭***逆子)前传+阅读全新作品预订
  • 姐姐含冤而死后冥王另娶,我杀穿整个地府在线阅读_阎罗殿殷红别提一口气完结_小说后续在线阅读_无删减免费完结_
  • (书荒必看)毒后重生:疯王的神医小娇妻沈清歌,萧绝:+后续热血十足
  • 重生后我和太监联手灭了敌国喻辰,林雪续集(重生后我和太监联手灭了敌国)终极反转(喻辰,林雪)全篇一口气阅读
  • 我不做灵媒后,自称灵媒摆渡人的养妹害怕了内容精选_苏晓霍老阿姐无广告_小说后续在线阅读_无删减免费完结_

    关于我们 | 我要投稿 | 免责申明

    Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1