视频作者:菜菜TsaiTsai
链接:【技术干货】菜菜的机器学习sklearn【全85集】Python进阶_哔哩哔哩_bilibili
可以只看轮廓系数和卡林斯基-哈拉巴斯指数
不同于分类模型和回归,聚类算法的模型评估不是一件简单的事。在分类中,有直接结果(标签)的输出,并且分类的结果有正误之分,所以我们使用预测的准确度等指标来进行评估,但无论如何评估,都是在”模型找到正确答案“的能力。回归的评估也类似分类,都是基于标签的评估。但这些衡量指标都不能够使用于聚类。
那么如何衡量聚类算法的效果?
记得我们说过,KMeans的目标是确保“簇内差异小,簇外差异大”,我们就可以通过衡量簇内差异来衡量聚类的效果。我们刚才说过,Inertia是用距离来衡量簇内差异的指标,因此,我们可以使用Inertia来作为聚类的衡量指标,但是这个指标的缺点和极限太大。
它没有上界。我们只知道,Inertia是越小越好,是0最好,但我们不知道,一个较小的Inertia究竟有没有达到模型的极限,能否继续提高。我们也无法说一个数字对于当前模型到底是大还是小它的计算太容易受到特征数目的影响,数据维度很大的时候,Inertia的计算量会陷入维度诅咒之中,计算量会爆炸,不适合用来一次次评估模型。它会受到超参数K的影响,在我们之前的尝试中已经发现,随着K越大,Inertia注定会越来越小,但这并不代表模型的效果越来越好了Inertia对数据的分布有假设,它假设数据满足凸分布(即数据在二维平面图像上看起来是一个凸函数的样子),并且它假设数据是各向同性的(isotropic),即是说数据的属性在不同方向上代表着相同的含义。但是现实中的数据往往不是这样。所以使用Inertia作为评估指标,会让聚类算法在一些细长簇,环形簇,或者不规则形状的流形时表现不佳:那我们可以使用什么指标呢?分两种情况来看。
当真实标签已知的时候
在现实中,拥有真实标签的情况非常少见(几乎是不可能的)。如果拥有真实标签,我们更倾向于使用分类算法。但不排除我们依然可能使用聚类算法的可能性。如果我们有样本真实聚类情况的数据,我们可以对于聚类算法的结果和真实结果来衡量聚类的效果。常用的有以下三种方法:
模型评估指标 | 说明 |
---|---|
互信息分 普通互信息分 metrics.adjusted_mutual_info_score (y_pred, y_true) 调整的互信息分 metrics.mutual_info_score (y_pred, y_true) 标准化互信息分 metrics.normalized_mutual_info_score (y_pred, y_true) | 取值范围在(0,1)之中 越接近1,聚类效果越好 在随机均匀聚类下产生0分 |
V-measure:基于条件上分析的一系列直观度量 同质性:是否每个簇仅包含单个类的样本 metrics.homogeneity_score(y_true, y_pred) 完整性:是否给定类的所有样本都被分配给同一个簇中 metrics.completeness_score(y_true, y_pred) 同质性和完整性的调和平均,叫做V-measure metrics.v_measure_score(labels_true, labels_pred) 三者可以被一次性计算出来 metrics.homogeneity_completeness_v_measure(labels_true, labels_pred) | 取值范围在(0,1)之中 越接近1,聚类效果越好 由于分为同质性和完整性两种度量,可以更仔细地研究,模型到底哪个任务做得不够好 对样本分布没有假设,在任何分布上都可以有不错的表现 在随机均匀聚类下不会产生0分 |
调整兰德系数 metrics.adjusted_rand_score(y_true, y_pred) | 取值在(-1,1)之间,负值象征着簇内的点差异巨大,甚至相互独立,正类的兰德系数比较优秀,越接近1越好 对样本分布没有假设,在任何分布上都可以有不错的表现,尤其是在具有"折叠"形状的数据上表现优秀 在随机均匀聚类下产生0分 |
当真实标签未知的时候:轮廓系数
在99%的情况下,我们是对没有真实标签的数据进行探索,也就是对不知道真正答案的数据进行聚类。这样的聚类,是完全依赖于评价簇内的稠密程度(簇内差异小)和簇间的离散程度(簇外差异大)来评估聚类的效果。
轮廓系数是最常用的聚类算法的评价指标。它是对每个样本来定义的,它能够同时衡量:
根据聚类的要求”簇内差异小,簇外差异大“,我们希望b永远大于a,并且大得越多越好。
单个样本的轮廓系数计算为:
s = b − a max ( a , b ) s=\frac{b-a}{\max (a,b)} s=max(a,b)b−a
这个公式可以被解析为:
s = { 1 − a b a < b 0 a = b b a − 1 a > b s=\left\{\begin{aligned}&1- \frac{a}{b}&a<b\\&0&a=b\\& \frac{b}{a}-1&a>b\end{aligned}\right. s=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧1−ba0ab−1a<ba=ba>b
很容易理解轮廓系数范围是(-1,1),其中值越接近1表示样本与自己所在的簇中的样本很相似,并且与其他簇中的样本不相似,当样本点与簇外的样本更相似的时候,轮廓系数就为负。当轮廓系数为0时,则代表两个簇中的样本相似度一致,两个簇本应该是一个簇。可以总结为轮廓系数越接近于1越好,负数则表示聚类效果非常差。
如果许多样本点具有低轮廓系数甚至负值,则聚类是不合适的,聚类的超参数K可能设定得太大或者太小。
在sklearn中,我们使用模块metrics中的类silhouette_score来计算轮廓系数,它返回的是一个数据集中,所有样本的轮廓系数的均值。但我们还有同在metrics模块中的silhouette_sample,它的参数与轮廓系数一致,但返回的是数据集中每个样本自己的轮廓系数。
from sklearn.metrics import silhouette_scorefrom sklearn.metrics import silhouette_samplessilhouette_score(X,y_pred)---0.5882004012129721silhouette_samples(X,y_pred)---array([ 0.62982017, 0.5034877 , 0.56148795, 0.84881844, 0.56034142, 0.78740319, 0.39254042, 0.4424015 , 0.48582704, 0.41586457,……silhouette_samples(X,y_pred).shape---(500,)silhouette_samples(X,y_pred).mean()---0.5882004012129721silhouette_score(X,cluster_.labels_) # n_cluster = 4---0.6505186632729437silhouette_score(X,cluster_.labels_) # n_cluster = 5---0.5737098048695828silhouette_score(X,cluster_.labels_) # n_cluster = 6---0.4532882033128697
轮廓系数有很多优点,它在有限空间中取值,使得我们对模型的聚类效果有一个“参考”。并且,轮廓系数对数据的分布没有假设,因此在很多数据集上都表现良好。但它在每个簇的分割比较清晰时表现最好。
但轮廓系数也有缺陷,它在凸型的类上表现会虚高,比如基于密度进行的聚类,或通过DBSCAN获得的聚类结果,如果使用轮廓系数来衡量,则会表现出比真实聚类效果更高的分数。
当真实标签未知的时候:卡林斯基-哈拉巴斯指数
除了轮廓系数是最常用的,我们还有卡林斯基-哈拉巴斯指数(Calinski-Harabaz Index,简称CHI,也被称为方差比标准),戴维斯-布尔丁指数(Davies-Bouldin)以及权变矩阵(Contingency Matrix)可以使用。
标签未知时的评估指标 |
---|
卡林斯基-哈拉巴斯指数 sklearn.metrics.calinski_harabaz_score (X,y_pred) |
戴维斯-布尔丁指数 sklearn.metrics.davies_bouldin_score (X, y_pred) |
权变矩阵 sklearn.metrics.cluster.contingency_matrix (X, y_pred) |
在这里我们重点来了解一下卡林斯基-哈拉巴斯指数。Calinski-Harabaz指数越高越好。对于有k个簇的聚类而言, Calinski-Harabaz指数s(k)写作如下公式:
s ( k ) = T r ( B k ) T r ( W k ) ⋅ N − k k − 1 s(k)=\frac{Tr(B_{k})}{Tr(W_{k})}\cdot \frac{N-k}{k-1} s(k)=Tr(Wk)Tr(Bk)⋅k−1N−k
其中N为数据集中的样本量,k为簇的个数(即类别的个数), B k B_{k} Bk是组间离散矩阵,即不同簇之间的协方差矩阵, W k W_{k} Wk是簇内离散矩阵,即一个簇内数据的协方差矩阵,而 T r Tr Tr表示矩阵的迹。
数据之间的离散程度越高,协方差矩阵的迹就会越大。组内离散程度低,协方差的迹就会越小, T r ( W k ) Tr(W_{k}) Tr(Wk)也就越小,同时,组间离散程度大,协方差的的迹也会越大, T r ( B k ) Tr(B_{k}) Tr(Bk)就越大,这正是我们希望的,因此Calinski-harabaz指数越高越好。
from sklearn.metrics import calinski_harabasz_scorecalinski_harabasz_score(X,y_pred)---1809.991966958033
虽然calinski-Harabaz指数没有界,在凸型的数据上的聚类也会表现虚高。但是比起轮廓系数,它有一个巨大的优点,就是计算非常快速。
from time import timet0 = time()calinski_harabasz_score(X,y_pred)time() - t0---0.0010504722595214844t0 = time()silhouette_score(X,y_pred)time() - t0---0.01594376564025879
稍微说说卡林斯基-哈拉巴斯指数,因为实在是看着那个公式不解释一下感觉太怪了
B k B_{k} Bk为类间方差
B k = ∑ q = 1 k n q ( c q − c E ) ( c q − c E ) T B_{k}=\sum\limits_{q=1}^{k}n_{q}(c_{q}-c_{E})(c_{q}-c_{E})^{T} Bk=q=1∑knq(cq−cE)(cq−cE)T
k k k表示聚类结果的数量, c q c_{q} cq是类 q q q的质点, c E c_{E} cE是所有数据的中心点, n q n_{q} nq是类 q q q数据点的总数
W k W_{k} Wk为类内方差
W k = ∑ q = 1 k ∑ x ∈ C q ( x − c q ) ( x − c q ) T W_{k}=\sum\limits_{q=1}^{k}\sum\limits_{x \in C_{q}}^{}(x-c_{q})(x-c_{q})^{T} Wk=q=1∑kx∈Cq∑(x−cq)(x−cq)T
C q C_{q} Cq是类 q q q的质点
Calinski-Harbasz Score衡量分类情况和理想分类情况(类之间方差最大,类内方差最小)之间的区别,归一化因子 N − k k − 1 \frac{N-k}{k-1} k−1N−k随着类别数k的增加而减少,使得该方法更偏向于选择类别少的分类结果。这导致了在实验中K=2,往往得到很高的分数,但是这不是我们想要的结果。这时,我们需要去找另一个局部最优的K。即使找到的K不是真正的分数最高,但是只要它们对应的得分显著高,我们都可以接受这样的值,如同梯度一样,我们有的时候并不能找到全局最优,但是局部最优的结果仍可以接受。
链接:Calinski-Harbasz Score 详解_chloe_au_yeung的博客-CSDN博客_calinski_harabasz_score