当前位置:首页 » 《关注互联网》 » 正文

数据集:大学毕业生收入_linjing_zyq的博客

17 人参与  2022年01月23日 08:36  分类 : 《关注互联网》  评论

点击全文阅读


数据集:大学毕业生收入

下载地址,本文以绘制直方图为主。

1. 字段描述

字段名称字段类型字段说明
Major_code整型专业代码。
Major字符型专业名称。
Major_category字符型专业所属目录。
Total整型总人数。
Employed整型就业人数。
Employed_full_time_year_round整型全年全职在岗人数。
Unemployed整型失业人数。
Unemployment_rate浮点型失业率。
Median整型收入的中位数。
P25th整型收入的25百分位数。
P75th浮点型收入的75百分位数。

2. 数据预处理

2.1 导包

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import warnings
warnings.filterwarnings('ignore')

2.2 读取数据

df = pd.read_csv('大学毕业生收入数据集.csv')

3. 数据预览

3.1 预览数据

print(df.head())

结果

Major_code                                  Major  ...  P25th    P75th
0        1100                    GENERAL AGRICULTURE  ...  34000  80000.0
1        1101  AGRICULTURE PRODUCTION AND MANAGEMENT  ...  36000  80000.0
2        1102                 AGRICULTURAL ECONOMICS  ...  40000  98000.0
3        1103                        ANIMAL SCIENCES  ...  30000  72000.0
4        1104                           FOOD SCIENCE  ...  38500  90000.0

3.2 查看基本信息

df.info()

结果

RangeIndex: 173 entries, 0 to 172
Data columns (total 11 columns):
 #   Column                         Non-Null Count  Dtype  
---  ------                         --------------  -----  
 0   Major_code                     173 non-null    int64  
 1   Major                          173 non-null    object 
 2   Major_category                 173 non-null    object 
 3   Total                          173 non-null    int64  
 4   Employed                       173 non-null    int64  
 5   Employed_full_time_year_round  173 non-null    int64  
 6   Unemployed                     173 non-null    int64  
 7   Unemployment_rate              173 non-null    float64
 8   Median                         173 non-null    int64  
 9   P25th                          173 non-null    int64  
 10  P75th                          173 non-null    float64
dtypes: float64(2), int64(7), object(2)

3.3 查看重复值

print(df.duplicated().sum())

结果

0

3.4 查看缺失值

print(df.isnull().sum())

结果

Major_code                       0
Major                            0
Major_category                   0
Total                            0
Employed                         0
Employed_full_time_year_round    0
Unemployed                       0
Unemployment_rate                0
Median                           0
P25th                            0
P75th                            0
dtype: int64

4. 数据集描述性信息

describe = df.describe()
print(describe)

结果

Major_code         Total  ...         P25th          P75th
count   173.000000  1.730000e+02  ...    173.000000     173.000000
mean   3879.815029  2.302566e+05  ...  38697.109827   82506.358382
std    1687.753140  4.220685e+05  ...   9414.524761   20805.330126
min    1100.000000  2.396000e+03  ...  24900.000000   45800.000000
25%    2403.000000  2.428000e+04  ...  32000.000000   70000.000000
50%    3608.000000  7.579100e+04  ...  36000.000000   80000.000000
75%    5503.000000  2.057630e+05  ...  42000.000000   95000.000000
max    6403.000000  3.123510e+06  ...  78000.000000  210000.000000

[8 rows x 9 columns]

可在变量视图中查看describe

5. 数据分析

5.1 各专业种类(Major_category)的专业分支个数

Major_category_counts=df['Major_category'].value_counts()
print(Major_category_counts)
rects = plt.bar(range(1,17),Major_category_counts);
for rect in rects:  #rects 是三根柱子的集合
    height = rect.get_height()
    plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), size=12, ha='center', va='bottom')
interval = ['Engineering','Education','Humanities & Liberal Arts','Biology & Life Science','Business','Health','Computers & Mathematics','Agriculture & Natural Resources','Physical Sciences','Social Science','Psychology & Social Work','Arts','Industrial Arts & Consumer Services','Law & Public Policy','Communications & Journalism','Interdisciplinary']
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Number of Branches by Major Category')
plt.ylabel('Counts')
plt.show()

结果

Engineering                            29
Education                              16
Humanities & Liberal Arts              15
Biology & Life Science                 14
Business                               13
Health                                 12
Computers & Mathematics                11
Agriculture & Natural Resources        10
Physical Sciences                      10
Social Science                          9
Psychology & Social Work                9
Arts                                    8
Industrial Arts & Consumer Services     7
Law & Public Policy                     5
Communications & Journalism             4
Interdisciplinary                       1
Name: Major_category, dtype: int64

图示
在这里插入图片描述
结论
由于机械类专业发展历史悠久,故相对来说机械类专业分支数相较其他大类专业要多

5.2 各大类专业收入

averageMoney = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Median'][j]
    averageMoney.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageMoney);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Annual salary by Major Category')
plt.ylabel('Moneys')
plt.show()

图示
在这里插入图片描述
结论
由于机械类专业与人工智能、自动化等领域相关,故平均工资比较高;计算机与数学类专业发展前景很好,但是小公司工资普遍不高,大公司工资相对来说较高。

5.3 各大类专业失业率

averageUnemployRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Unemployment_rate'][j]
    averageUnemployRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageUnemployRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Unemployment Rate by Major Category')
plt.ylabel('Rate')
plt.show()

图示
在这里插入图片描述
结论
艺术类专业由于可变动性特别大,加上对人才的要求相对来说较为苛刻,故失业率较高。

5.4 各大类专业就业率

averageEmployRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Employed'][j] / df['Total'][j]
    averageEmployRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageEmployRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Employment Rate by Major Category')
plt.ylabel('Rate')
plt.show()

图示
在这里插入图片描述
结论
相对来说,由于计算机的发展前景,计算机与数学类的就业率较高。

5.5 各大类专业全年全职在岗率

averageFullTimeRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Employed_full_time_year_round'][j] / df['Employed'][j]
    averageFullTimeRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageFullTimeRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Full-Time Rate by Major Category')
plt.ylabel('Rate')
plt.show()

图示
在这里插入图片描述

5.6 各大类专业总人数

averageNum = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Total'][j]
    averageNum.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageNum);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Total Numbers by Major Category')
plt.ylabel('Counts')
plt.show()

图示
在这里插入图片描述

5.7 就业失业比

EUratio = []
for i in range(len(interval)):
    EUratio.append(averageEmployRate[i]/averageUnemployRate[i])
plt.bar(range(1,17),EUratio);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Employment-Unemployment Ratio by Major Category')
plt.ylabel('Ratio')
plt.show()

图示
在这里插入图片描述
结论
相对来说,农业就业的门槛低,就业率高的同时失业率低。

6. 完整代码

# 导包
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import warnings
warnings.filterwarnings('ignore')

# 读取数据
df = pd.read_csv('大学毕业生收入数据集.csv')

# 预览数据
print(df.head())

# 规范字段名称(本数据集已经较为规范)

# 查看基本信息
df.info()

# 查看重复值
print(df.duplicated().sum())

# 查看缺失值
print(df.isnull().sum())

# 查看数据集描述性信息
describe = df.describe()
print(describe)

# 统计表中每个专业种类(Major_category)的个数
Major_category_counts=df['Major_category'].value_counts()
print(Major_category_counts)
rects = plt.bar(range(1,17),Major_category_counts);
for rect in rects:  #rects 是三根柱子的集合
    height = rect.get_height()
    plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), size=12, ha='center', va='bottom')
interval = ['Engineering','Education','Humanities & Liberal Arts','Biology & Life Science','Business','Health','Computers & Mathematics','Agriculture & Natural Resources','Physical Sciences','Social Science','Psychology & Social Work','Arts','Industrial Arts & Consumer Services','Law & Public Policy','Communications & Journalism','Interdisciplinary']
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Number of Branches by Major Category')
plt.ylabel('Counts')
plt.show()

# 对各大类专业收入作统计并作图
averageMoney = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Median'][j]
    averageMoney.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageMoney);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Annual salary by Major Category')
plt.ylabel('Moneys')
plt.show()

# 对各大类专业失业率作统计并作图
averageUnemployRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Unemployment_rate'][j]
    averageUnemployRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageUnemployRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Unemployment Rate by Major Category')
plt.ylabel('Rate')
plt.show()

# 对各大类专业就业率作统计并作图
averageEmployRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Employed'][j] / df['Total'][j]
    averageEmployRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageEmployRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Employment Rate by Major Category')
plt.ylabel('Rate')
plt.show()

# 对各大类专业全年全职在岗率作统计并作图(没有早退的)
averageFullTimeRate = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Employed_full_time_year_round'][j] / df['Employed'][j]
    averageFullTimeRate.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageFullTimeRate);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Full-Time Rate by Major Category')
plt.ylabel('Rate')
plt.show()

# 对各大类专业总人数作统计并作图
averageNum = []
for i in range(len(interval)):
    sum = 0
    for j in range(173):
        if df['Major_category'][j] == interval[i]:
            sum = sum + df['Total'][j]
    averageNum.append(sum/Major_category_counts[i])
plt.bar(range(1,17),averageNum);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Average Total Numbers by Major Category')
plt.ylabel('Counts')
plt.show()

# 对各大类专业就业失业比作统计并作图
EUratio = []
for i in range(len(interval)):
    EUratio.append(averageEmployRate[i]/averageUnemployRate[i])
plt.bar(range(1,17),EUratio);
plt.xticks(range(1,17),interval,rotation=90);
plt.title('Employment-Unemployment Ratio by Major Category')
plt.ylabel('Ratio')
plt.show()



点击全文阅读


本文链接:http://zhangshiyu.com/post/33753.html

各大  类专业  数据  
<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1