当前位置:首页 » 《关注互联网》 » 正文

【万物皆可 GAN】给马儿换皮肤_我是小白呀的博客

4 人参与  2021年07月15日 14:23  分类 : 《关注互联网》  评论

点击全文阅读


【万物皆可 GAN】给马儿换皮肤

  • 概述
  • 真假斑马
  • 实现流程
  • 代码
  • 执行流程
  • 执行结果

概述

CycleGAN (Cycle Generative Adversarial Network) 即循环对抗生成网络. CycleGAN 可以帮助我们实现图像的互相转换.

在这里插入图片描述

真假斑马

我们先来看一组图片, 大家来猜一猜图上的动物是什么:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
你觉得图里面是斑马么? 其实你错了, 他们都是马. 惊不惊喜, 意不意外.

原图:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

实现流程

CycleGAN 由左右两个 GAN 网络组成. G(AB) 负责把 A 类物体 (斑马) 转换成 B 类物体 (正常的马). G(BA) 负责把 B 类物体 (正常的马) 还原成 A 类物体 (斑马).
在这里插入图片描述

代码

我们需要修改的参数有:

  • dataroot: 数据集路径
  • name: 运行试验的名称
  • batch-size: 批次大小, 默认为 1
  • n_epochs: 正常学习率迭代次数
  • n_epochs_decay: 学习率衰减至 0 的迭代次数

base_options.py:

import argparse
import os
from util import util
import torch
import models
import data


class BaseOptions():
    """This class defines options used during both training and test time.

    It also implements several helper functions such as parsing, printing, and saving the options.
    It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
    """

    def __init__(self):
        """Reset the class; indicates the class hasn't been initailized"""
        self.initialized = False

    def initialize(self, parser):
        """Define the common options that are used in both training and test."""
        # basic parameters
        parser.add_argument('--dataroot', type=str, default="./datasets/horse2zebra", help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
        parser.add_argument('--name', type=str, default='maps_cyclegan', help='name of the experiment. It decides where to store samples and models')
        parser.add_argument('--gpu_ids', type=str, default='-1', help='gpu ids: e.g. 0  0,1,2, 0,2. use -1 for CPU')
        parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
        # model parameters
        parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
        parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale')
        parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale')
        parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
        parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
        parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
        parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
        parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
        parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
        parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
        parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
        parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
        # dataset parameters
        parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
        parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
        parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
        parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
        parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
        parser.add_argument('--load_size', type=int, default=286, help='scale images to this size')
        parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size')
        parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
        parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
        parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
        parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
        # additional parameters
        parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
        parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
        parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
        parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
        self.initialized = True
        return parser

    def gather_options(self):
        """Initialize our parser with basic options(only once).
        Add additional model-specific and dataset-specific options.
        These options are defined in the <modify_commandline_options> function
        in model and dataset classes.
        """
        if not self.initialized:  # check if it has been initialized
            parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
            parser = self.initialize(parser)

        # get the basic options
        opt, _ = parser.parse_known_args()

        # modify model-related parser options
        model_name = opt.model
        model_option_setter = models.get_option_setter(model_name)
        parser = model_option_setter(parser, self.isTrain)
        opt, _ = parser.parse_known_args()  # parse again with new defaults

        # modify dataset-related parser options
        dataset_name = opt.dataset_mode
        dataset_option_setter = data.get_option_setter(dataset_name)
        parser = dataset_option_setter(parser, self.isTrain)

        # save and return the parser
        self.parser = parser
        return parser.parse_args()

    def print_options(self, opt):
        """Print and save options

        It will print both current options and default values(if different).
        It will save options into a text file / [checkpoints_dir] / opt.txt
        """
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

        # save to the disk
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
        with open(file_name, 'wt') as opt_file:
            opt_file.write(message)
            opt_file.write('\n')

    def parse(self):
        """Parse our options, create checkpoints directory suffix, and set up gpu device."""
        opt = self.gather_options()
        opt.isTrain = self.isTrain   # train or test

        # process opt.suffix
        if opt.suffix:
            suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
            opt.name = opt.name + suffix

        self.print_options(opt)

        # set gpu ids
        str_ids = opt.gpu_ids.split(',')
        opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                opt.gpu_ids.append(id)
        if len(opt.gpu_ids) > 0:
            torch.cuda.set_device(opt.gpu_ids[0])

        self.opt = opt
        return self.opt

train_options.py:

from .base_options import BaseOptions


class TrainOptions(BaseOptions):
    """This class includes training options.

    It also includes shared options defined in BaseOptions.
    """

    def initialize(self, parser):
        parser = BaseOptions.initialize(self, parser)
        # visdom and HTML visualization parameters
        parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen')
        parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.')
        parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
        parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display')
        parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")')
        parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
        parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html')
        parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
        parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
        # network saving and loading parameters
        parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
        parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs')
        parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration')
        parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model')
        parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
        parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
        # training parameters
        parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate')
        parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero')
        parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
        parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
        parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
        parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images')
        parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]')
        parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')

        self.isTrain = True
        return parser

执行流程

我们先打开 cmd 命令行:
在这里插入图片描述
输入命令:

python -m visdom.server  # 激活visdom

在这里插入图片描述

打开网页http://localhost:8097/:
在这里插入图片描述
然后 cd 到文件夹路径:

cd 路径

在这里插入图片描述
输入命令 (大家请根据自己设备自行更改参数):

python train.py --name experiment --batch_size 16 --n_epochs 20 --gpu_ids 0, 1 

输出结果:

----------------- Options ---------------
               batch_size: 16                                   [default: 1]
                    beta1: 0.5
          checkpoints_dir: ./checkpoints
           continue_train: False
                crop_size: 256
                 dataroot: ./datasets/horse2zebra
             dataset_mode: unaligned
                direction: AtoB
              display_env: main
             display_freq: 400
               display_id: 1
            display_ncols: 4
             display_port: 8097
           display_server: http://localhost
          display_winsize: 256
                    epoch: latest
              epoch_count: 1
                 gan_mode: lsgan
                  gpu_ids: -1
                init_gain: 0.02
                init_type: normal
                 input_nc: 3
                  isTrain: True                                 [default: None]
                 lambda_A: 10.0
                 lambda_B: 10.0
          lambda_identity: 0.5
                load_iter: 0                                    [default: 0]
                load_size: 286
                       lr: 0.0002
           lr_decay_iters: 50
                lr_policy: linear
         max_dataset_size: inf
                    model: cycle_gan
                 n_epochs: 20                                   [default: 100]
           n_epochs_decay: 100
               n_layers_D: 3
                     name: experiment                           [default: maps_cyclegan]
                      ndf: 64
                     netD: basic
                     netG: resnet_9blocks
                      ngf: 64
               no_dropout: True
                  no_flip: False
                  no_html: False
                     norm: instance
              num_threads: 4
                output_nc: 3
                    phase: train
                pool_size: 50
               preprocess: resize_and_crop
               print_freq: 100
             save_by_iter: False
          save_epoch_freq: 5
         save_latest_freq: 5000
           serial_batches: False
                   suffix:
         update_html_freq: 1000
                  verbose: False
----------------- End -------------------
C:\Users\Windows\Anaconda3\lib\site-packages\torchvision\transforms\transforms.py:258: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.
  "Argument interpolation should be of type InterpolationMode instead of int. "
dataset [UnalignedDataset] was created
The number of training images = 1334
initialize network with normal
initialize network with normal
initialize network with normal
initialize network with normal
model [CycleGANModel] was created
---------- Networks initialized -------------
[Network G_A] Total number of parameters : 11.378 M
[Network G_B] Total number of parameters : 11.378 M
[Network D_A] Total number of parameters : 2.765 M
[Network D_B] Total number of parameters : 2.765 M
-----------------------------------------------
WARNING:root:Setting up a new session...

执行结果

损失变换:

在这里插入图片描述
部分结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


点击全文阅读


本文链接:http://zhangshiyu.com/post/23422.html

斑马  物体  流程  
<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1