科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。
需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客
算法介绍
SSA(Sparrow Search Algorithm,麻雀搜索算法)是一种新型的群体智能优化算法,由Xue及其同事在2020年提出。该算法受到麻雀觅食行为的启发,模拟了麻雀在寻找食物时的群体动态和信息传播机制。
基本概念
麻雀搜索算法的核心思想是通过模拟麻雀觅食过程中的发现者(leaders)和追随者(followers)之间的相互作用,以及麻雀面对危险时的反应机制,来进行全局搜索和局部开发。这一机制使得SSA在解决复杂优化问题时具有出色的性能。
算法流程
初始化:
在搜索空间中随机生成一组初始解,称为麻雀个体。
适应度评估:
计算每个麻雀个体的适应度值,这通常由特定优化问题的目标函数来决定。
角色划分:
将麻雀群体分为发现者和追随者。发现者负责探索新的食物资源(解),而追随者则跟随发现者以获得食物。
位置更新:
追随者通过局部搜索调整位置,以对当前解进行优化。
发现者通过全局搜索更新位置,以寻找潜在的最优解。
抗干扰机制:
模拟麻雀在面对捕食者威胁时的行为,增强算法跳出局部最优解的能力。
更新最优解:
根据适应度值更新全局最佳解,以指导麻雀群体的下一步搜索。
迭代:
重复上述过程,直到满足停止条件,如达到最大迭代次数或找到满意的解。
优势与应用
麻雀搜索算法具有以下优势:
全局搜索能力强:通过发现者的探索行为,SSA具有很强的全局搜索能力。
跳出局部最优的能力:抗干扰机制帮助SSA有效避免陷入局部最优。
简单易用:算法结构简单,易于实现,适用于多种优化问题。
由于这些优势,SSA被广泛应用于工程设计优化、数据挖掘、机器学习参数优化等领域。与其他群体智能算法类似,SSA的性能可能受到参数设置和具体问题特征的影响,因此在实际应用中需要进行适当的调整和优化。
原理不多介绍了,直接看代码就好。
SSA是我实验了这么久,发现最通用效果最好的智能仿生优化算法。
代码实现
导入包
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt import seaborn as snsimport warningsimport copyplt.rcParams ['font.sans-serif'] ='SimHei' #显示中文plt.rcParams ['axes.unicode_minus']=False #显示负号warnings.filterwarnings('ignore')plt.rcParams['font.family'] = 'DejaVu Sans'
只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:
'''F1函数'''def F1(X): Results=np.sum(X**2) return Results '''F2函数'''def F2(X): Results=np.sum(np.abs(X))+np.prod(np.abs(X)) return Results '''F3函数'''def F3(X): dim=X.shape[0] Results=0 for i in range(dim): Results=Results+np.sum(X[0:i+1])**2 return Results '''F4函数'''def F4(X): Results=np.max(np.abs(X)) return Results '''F5函数'''def F5(X): dim=X.shape[0] Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2) return Results '''F6函数'''def F6(X): Results=np.sum(np.abs(X+0.5)**2) return Results '''F7函数'''def F7(X): dim = X.shape[0] Temp = np.arange(1,dim+1,1) Results=np.sum(Temp*(X**4))+np.random.random() return Results '''F8函数'''def F8(X): Results=np.sum(-X*np.sin(np.sqrt(np.abs(X)))) return Results '''F9函数'''def F9(X): dim=X.shape[0] Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim return Results '''F10函数'''def F10(X): dim=X.shape[0] Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1) return Results '''F11函数'''def F11(X): dim=X.shape[0] Temp=np.arange(1,dim+1,+1) Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1 return Results '''F12函数'''def Ufun(x,a,k,m): Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a) return Results def F12(X): dim=X.shape[0] Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\ np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\ np.sum(Ufun(X,10,100,4)) return Results '''F13函数'''def Ufun(x,a,k,m): Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a) return Results def F13(X): dim=X.shape[0] Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\ ((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4)) return Results '''F14函数'''def F14(X): aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\ [-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]]) bS=np.zeros(25) for i in range(25): bS[i]=np.sum((X-aS[:,i])**6) Temp=np.arange(1,26,1) Results=(1/500+np.sum(1/(Temp+bS)))**(-1) return Results '''F15函数'''def F15(X): aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246]) bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16]) bK=1/bK Results=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2) return Results '''F16函数'''def F16(X): Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4) return Results '''F17函数'''def F17(X): Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10 return Results '''F18函数'''def F18(X): Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\ (30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2))) return Results '''F19函数'''def F19(X): aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]]) cH=np.array([1,1.2,3,3.2]) pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]]) Results=0 for i in range(4): Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2))) return Results '''F20函数'''def F20(X): aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]]) cH=np.array([1,1.2,3,3.2]) pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\ [0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]]) Results=0 for i in range(4): Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2))) return Results '''F21函数'''def F21(X): aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\ [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]) cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]) Results=0 for i in range(5): Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1) return Results '''F22函数'''def F22(X): aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\ [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]) cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]) Results=0 for i in range(7): Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1) return Results '''F23函数'''def F23(X): aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\ [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]) cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]) Results=0 for i in range(10): Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1) return Results
把他们的参数设置都用字典装起来
Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10, 'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17, 'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}Funobject.keys() #维度,搜索区间下界,搜索区间上界,最优值Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30], 'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32], 'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5], 'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}
Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。
麻雀搜索优化算法
终于到了算法的主代码阶段了:
import numpy as npimport copyimport randomdef initialization(pop,ub,lb,dim): ''' 种群初始化函数''' ''' pop:为种群数量 dim:每个个体的维度 ub:每个维度的变量上边界,维度为[dim,1] lb:为每个维度的变量下边界,维度为[dim,1] X:为输出的种群,维度[pop,dim] ''' X = np.zeros([pop,dim]) #声明空间 for i in range(pop): for j in range(dim): X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数 return X def BorderCheck(X,ub,lb,pop,dim): '''边界检查函数''' ''' dim:为每个个体数据的维度大小 X:为输入数据,维度为[pop,dim] ub:为个体数据上边界,维度为[dim,1] lb:为个体数据下边界,维度为[dim,1] pop:为种群数量 ''' for i in range(pop): for j in range(dim): if X[i,j]>ub[j]: X[i,j] = ub[j] elif X[i,j]<lb[j]: X[i,j] = lb[j] return Xdef CaculateFitness(X,fun): '''计算种群的所有个体的适应度值''' pop = X.shape[0] fitness = np.zeros([pop, 1]) for i in range(pop): fitness[i] = fun(X[i, :]) return fitnessdef SortFitness(Fit): '''适应度值排序''' ''' 输入为适应度值 输出为排序后的适应度值,和索引 ''' fitness = np.sort(Fit, axis=0) index = np.argsort(Fit, axis=0) return fitness,indexdef SortPosition(X,index): '''根据适应度值对位置进行排序''' Xnew = np.zeros(X.shape) for i in range(X.shape[0]): Xnew[i,:] = X[index[i],:] return Xnewdef SSA(pop,dim,lb,ub,Max_iter,fun): '''麻雀搜索算法''' ''' 输入: pop:为种群数量 dim:每个个体的维度 ub:为个体上边界信息,维度为[1,dim] lb:为个体下边界信息,维度为[1,dim] fun:为适应度函数接口 MaxIter:为最大迭代次数 输出: GbestScore:最优解对应的适应度值 GbestPositon:最优解 Curve:迭代曲线 ''' ST = 0.8 #预警值 PD = 0.2 #发现者的比列,剩下的是加入者 SD = 0.1 #意识到有危险麻雀的比重 PDNumber = int(pop*PD) #发现者数量 SDNumber = int(pop*SD) #意识到有危险麻雀数量 X = initialization(pop,ub,lb,dim) #初始化种群 fitness = CaculateFitness(X,fun) #计算适应度值 fitness,sortIndex = SortFitness(fitness) #对适应度值排序 X = SortPosition(X,sortIndex) #种群排序 GbestScore = copy.copy(fitness[0]) GbestPositon = np.zeros([1,dim]) GbestPositon[0,:] = copy.copy(X[0,:]) Curve = np.zeros([Max_iter,1]) for t in range(Max_iter): print("第"+str(t)+"次迭代") BestF = copy.copy(fitness[0]) Xworst = copy.copy(X[-1,:]) Xbest = copy.copy(X[0,:]) '''发现者位置更新''' R2 = np.random.random() for i in range(PDNumber): if R2<ST: X[i,:] = X[i,:]*np.exp(-i/(np.random.random()*Max_iter)) else: X[i,:] = X[i,:] + np.random.randn()*np.ones([1,dim]) X = BorderCheck(X,ub,lb,pop,dim) #边界检测 fitness = CaculateFitness(X,fun) #计算适应度值 bestII=np.argmin(fitness) Xbest = copy.copy(X[bestII,:]) '''加入者位置更新''' for i in range(PDNumber+1,pop): if i>(pop - PDNumber)/2 + PDNumber: X[i,:]= np.random.randn()*np.exp((Xworst - X[i,:])/i**2) else: #产生-1,1的随机数 A = np.ones([dim,1]) for a in range(dim): if(np.random.random()>0.5): A[a]=-1 AA = np.dot(A,np.linalg.inv(np.dot(A.T,A))) X[i,:]= X[0,:] + np.abs(X[i,:] - GbestPositon)*AA.T X = BorderCheck(X,ub,lb,pop,dim) #边界检测 fitness = CaculateFitness(X,fun) #计算适应度值 '''意识到危险的麻雀更新''' Temp = range(pop) RandIndex = random.sample(Temp, pop) SDchooseIndex = RandIndex[0:SDNumber]#随机选取对应比列的麻雀作为意识到危险的麻雀 for i in range(SDNumber): if fitness[SDchooseIndex[i]]>BestF: X[SDchooseIndex[i],:] = Xbest + np.random.randn()*np.abs(X[SDchooseIndex[i],:] - Xbest) elif fitness[SDchooseIndex[i]] == BestF: K = 2*np.random.random() - 1 X[SDchooseIndex[i],:] = X[SDchooseIndex[i],:] + K*(np.abs( X[SDchooseIndex[i],:] - X[-1,:])/(fitness[SDchooseIndex[i]] - fitness[-1] + 10E-8)) X = BorderCheck(X,ub,lb,pop,dim) #边界检测 fitness = CaculateFitness(X,fun) #计算适应度值 fitness,sortIndex = SortFitness(fitness) #对适应度值排序 X = SortPosition(X,sortIndex) #种群排序 if(fitness[0]<GbestScore): #更新全局最优 GbestScore = copy.copy(fitness[0]) GbestPositon[0,:] = copy.copy(X[0,:]) Curve[t] = GbestScore return GbestScore,GbestPositon,Curve
其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。
OPT_algorithms = {'SSA':SSA}OPT_algorithms.keys()
简单使用
我们选择F7来测试,先看看F7函数三维的情况:
'''F7绘图函数'''import numpy as npfrom matplotlib import pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Ddef F7(X): dim = X.shape[0] Temp = np.arange(1,dim+1,1) Results=np.sum(Temp*(X**4))+np.random.random() return Resultsdef F7Plot(): fig = plt.figure(1) #定义figure ax = Axes3D(fig) #将figure变为3d x1=np.arange(-1.28,1.28,0.02) #定义x1,范围为[-1.28,1.28],间隔为0.02 x2=np.arange(-1.28,1.28,0.02) #定义x2,范围为[-1.28,1.28],间隔为0.02 X1,X2=np.meshgrid(x1,x2) #生成网格 nSize = x1.shape[0] Z=np.zeros([nSize,nSize]) for i in range(nSize): for j in range(nSize): X=[X1[i,j],X2[i,j]] #构造F7输入 X=np.array(X) #将格式由list转换为array Z[i,j]=F7(X) #计算F7的值 #绘制3D曲面 # rstride:行之间的跨度 cstride:列之间的跨度 # rstride:行之间的跨度 cstride:列之间的跨度 # cmap参数可以控制三维曲面的颜色组合 ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow')) ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线 ax.set_xlabel('X1')#x轴说明 ax.set_ylabel('X2')#y轴说明 ax.set_zlabel('Z')#z轴说明 ax.set_title('F7_space') plt.show()F7Plot()
然后我们使用优化算法来寻优,自定义好所有的参数:
#设置参数pop = 30 #种群数量MaxIter = 200#最大迭代次数dim = 30 #维度lb = -100*np.ones([dim, 1]) #下边界ub = 100*np.ones([dim, 1])#上边界#选择适应度函数fobj = F7#原始算法GbestScore,GbestPositon,Curve = SSA(pop,dim,lb,ub,MaxIter,fobj) #改进算法print('------原始算法结果--------------')print('最优适应度值:',GbestScore)print('最优解:',GbestPositon)
其实f7测试函数的最小值是零。所以可以看到这些结果就是为零,,效果是挺好的,SSA效果是很不错的。
自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。
这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。
绘制适应度曲线
#绘制适应度曲线plt.figure(figsize=(6,2.7),dpi=128)plt.semilogy(Curve,'b-',linewidth=2)plt.xlabel('Iteration',fontsize='medium')plt.ylabel("Fitness",fontsize='medium')plt.grid()plt.title('SSA',fontsize='large')plt.legend(['SSA'], loc='upper right')plt.show()
我这里是对数轴,但是也收敛了,在100左右基本就到0了,SSA还是很厉害的。
其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。
所有函数都测试一下
准备存储评价结果的数据框
functions = list(Funobject.keys())algorithms = list(OPT_algorithms.keys())columns = ['Mean', 'Std', 'Best', 'Worth']index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])df_eval = pd.DataFrame(index=index, columns=columns)df_eval.head()
索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。
准备存储迭代图的数据框
df_Curve=pd.DataFrame(columns=index)df_Curve
自定义训练函数
#定义训练函数def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False): fundim=Fundim[fobj_name] ; fobj=Funobject[fobj_name] dim=fundim[0] lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1]) opt_algo=OPT_algorithms[opt_algo_name] GbestScore_one=np.zeros([Iter]) GbestPositon_one=np.zeros([Iter,dim]) Curve_one=np.zeros([Iter,MaxIter]) for i in range(Iter): GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj) Curve_one[i,:]=Curve_oneT.T oneal_Mean=np.mean(GbestScore_one) #计算平均适应度值 oneal_Std=np.std(GbestScore_one)#计算标准差 oneal_Best=np.min(GbestScore_one)#计算最优值 oneal_Worst=np.max(GbestScore_one)#计算最差值 oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线 #储存结果 df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst] df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve #df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurve if show_fit: print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')
训练测试
#设置参数pop = 30#种群数量MaxIter = 100 #代次数Iter = 30 #运行次数
计算,遍历所有的测试函数
#所有函数,所有算法全部一次性计算for fobj_name in list(Funobject.keys()): for opt_algo_name in OPT_algorithms.keys(): try: train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter) print(f'{fobj_name}的{opt_algo_name}算法完成') except Exception as e: # 使用 except 来捕获错误 print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息
查看计算出来的评价指标
df_eval
由于这里大部分的测试函数最优值都是零,我们可以看到。SSA在很多函数上基本是可以找到最优值的,SSA性能是很强的。
画出迭代图
colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']markers = ['^', 'D', 'o', '*', 'X', 'p', 's']def plot_log_line(df_plot, fobj_name, step=10, save=False): plt.figure(figsize=(6, 3), dpi=128) for column, color, marker in zip(df_plot.columns, colors, markers): plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(), color=color, marker=marker, label=column, markersize=4, alpha=0.7) plt.xlabel('Iterations') plt.ylabel('f') plt.legend(loc='best', fontsize=8) if save: plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight') plt.show()# 使用示例# plot_log_line(your_dataframe, 'example_plot')for fobj_name in df_Curve.columns.get_level_values(0).unique(): df1=df_Curve[fobj_name] print(f'{fobj_name}的不同算法效果对比:') plot_log_line(df1,fobj_name,5,False) #保存图片-True
注意这里是y轴是对数轴,看起来没那么陡峭。这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。。。当然观察后这个算法效果是很好的,100轮基本都收敛到最优值了,SSA是我目前见到的最通用的效果最好的算法。
后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的
当然需要本次案例的全部代码文件的还是可以参考:麻雀搜索优化算法
创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)