本文介绍如何使用 Ollama 在本地部署 Llama 3.1:8B 模型,并通过 OpenWeb UI 和 Spring AI 来增强模型交互体验和简化 API 的调用过程。
Ollama
Ollama 是一个开源的大语言模型服务工具,旨在简化大模型的本地部署和运行过程。用户只需要输入一行命令(如: ollama run llama3.1
),即可在本地硬件环境中部署和使用大语言模型。Ollama 还提供了 REST API 接口,下文中会介绍如何使用 Spring AI 集成 Ollama,实现与大模型 API 接口的交互。
Ollama 支持下载 Llama、Gemma、qwen 和 glm4 等多种主流大语言模型和代码语言模型,我们可以在 官网 查看 Ollama 支持的所有模型及其相关信息和使用命令。 本机运行 7B 参数量的模型至少需要 8GB 内存,运行 13B 参数量的模型至少需要 16GB 内存,运行 33B 参数量的模型至少需要 32GB 内存。
模型 | 参数 | 大小 | 使用命令 |
---|---|---|---|
Llama 3.1 | 8B | 4.7GB | ollama run llama3.1 |
Llama 3.1 | 70B | 40GB | ollama run llama3.1:70b |
Llama 3.1 | 405B | 231GB | ollama run llama3.1:405b |
Gemma 2 | 9B | 5.5GB | ollama run gemma2 |
Gemma 2 | 27B | 16GB | ollama run gemma2:27b |
qwen2 | 7B | 4.4GB | ollama run qwen2 |
qwen2 | 72B | 41GB | ollama run qwen2:72b |
glm4 | 9B | 5.5GB | ollama run glm4 |
下载
访问 Ollama 官网,选择操作系统,然后点击 download 按钮进行下载。操作系统要求 MacOS 11 和 Windows 10 及以上版本。下载完成后的 Ollama 其实是一个命令行工具,我们可以直接在终端中使用 Ollama。(执行 ollama --help
可查看 Ollama 提供的的命令)
部署 Llama 3.1
在终端中执行命令 ollama run llama3.1
,即可下载 Llama3.1:8B 模型。模型下载完成后,会自动启动大模型,进入命令行交互模式,直接输入指令,就可以和模型进行对话了。
通过 Ollama,我们轻松的实现了本地大模型的部署和命令行式的交互,但是为了更好的使用大模型,以及对大模型进行管理和配置等方面的需求,就需要借助 Ollama 社区中一些强大的工具了,其中代表性的工具之一是 OpenWeb UI(之前称为 Ollama WebUI)。
OpenWeb UI
OpenWeb UI 是一个功能丰富且易于使用的大模型管理工具,它为用户提供了一个直观的图形化界面,以及广泛的功能和灵活的配置选项。
方便部署:使用 Docker 实现简单快捷的部署。用户友好的页面:国际化多语言支持,提供多种主题样式,响应式设计,模型参数、Prompt 等便捷配置。功能丰富:本地 RAG 支持,Web 浏览功能(可以在对话中访问网站),语音交互等。API 支持:支持 OpenAI API 和其他兼容 API。多模型支持:支持同时管理和操作多个大语言模型。下载
部署 OpenWeb UI 需要使用 Docker 环境,我本机的 Docker 版本是 24.0.2。OpenWeb UI 提供了集成 Ollama 的部署方式, 因为 Ollama 已经下载到我本机上了,所以只需要执行以下命令即可完成部署。
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
容器启动成功后,可以访问 3000 端口,查看页面。首次登陆需要先填写邮箱和密码注册账号。登陆进来后,可以看到,OpenWeb UI 已经自动加载到了我们本地部署的 Llama3.1 模型。
在模型编辑页面,我们可以修改模型的配置参数和 Prompt 等信息,并利用 Document 和 Tools 等工具来增强模型的能力和使用体验。
Spring AI
Spring AI 是 Spring 生态里人工智能方向的应用框架,它提供了与各种大语言模型交互的高级抽象接口,极大地简化了Java 人工智能应用程序的开发过程,让 Java 开发者也能够开发 AI 应用。
接下来将详细介绍 Spring AI 的使用流程,以及如何调用 Ollama 的 API 接口,与我们本地的 Llama 3.1 进行交互。
集成 Ollama
创建一个新的 Spring Boot 项目,版本要求 Spring Boot 3 + JDK 17。引入 Spring AI + Ollama 依赖。<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.3.1</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.cleaner</groupId> <artifactId>culture-ai</artifactId> <version>0.0.1-SNAPSHOT</version> <name>Cleaner-ai</name> <description>culture-ai</description> <properties> <java.version>17</java.version> <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version> </properties> <dependencies> <!-- ollama --> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-ollama-spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <dependencyManagement> <dependencies> <!-- spring ai --> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>${spring-ai.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> <repositories> <!-- spring ai --> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <releases> <enabled>false</enabled> </releases> </repository> </repositories></project>
编写 application.yaml 配置文件,添加 Ollama 的相关配置。 server: port: 8888spring: application: name: Cleaner-AI ai: ollama: # ollama API Server 地址 base-url: http://localhost:11434 chat: enabled: true # 使用的模型名称 model: llama3.1:8b options: temperature: 0.7
编写接口。 package com.cleaner.ai.controller;import jakarta.annotation.Resource;import org.springframework.ai.chat.messages.UserMessage;import org.springframework.ai.chat.model.ChatResponse;import org.springframework.ai.chat.prompt.Prompt;import org.springframework.ai.ollama.OllamaChatModel;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;import reactor.core.publisher.Flux;@RestController@RequestMapping("/ollama")public class OllamaController { @Resource private OllamaChatModel ollamaChatModel; /** * 流式对话 * * @param message 用户指令 * @return */ @GetMapping("/streamChat") public Flux<ChatResponse> generateStream(@RequestParam("message") String message) { message = "请使用中文简体回答:" + message; Prompt prompt = new Prompt(new UserMessage(message)); return ollamaChatModel.stream(prompt); } /** * 普通对话 * @param message 用户指令 * @return */ @GetMapping("/chat") public String generate(@RequestParam("message") String message) { message = "请使用中文简体回答:" + message; Prompt prompt = new Prompt(new UserMessage(message)); ChatResponse chatResponse = ollamaChatModel.call(prompt); String content = chatResponse.getResult().getOutput().getContent(); System.out.println("content = " + content); return chatResponse.toString(); }}
调用接口,可以看到 API 接口调用成功。(8B 模型生成的回答内容还是比较有限) 总结
本地部署的大模型可以脱离网络离线使用,但是要达到实际使用的要求,还需要对模型进行细致化的配置,当然部署模型的参数量越大,使用效果会更好,但也要考虑本机电脑的配置限制。对于学习了解大模型及其相关的技术知识而言,在条件允许的情况下,本机部署确实是一个不错的选择。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
?学会后的收获:?
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
?获取方式:
?有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】?