当前位置:首页 » 《资源分享》 » 正文

【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)

3 人参与  2024年09月30日 19:21  分类 : 《资源分享》  评论

点击全文阅读


文章目录

从零实现 `list` 容器:细粒度剖析与代码实现前言1. `list` 的核心数据结构1.1节点结构分析: 2. 迭代器设计与实现2.1 为什么 `list` 需要迭代器?2.2 实现一个简单的迭代器2.2.1 迭代器代码实现:2.2.2 解释: 2.3 测试简单迭代器2.3.1 测试代码:2.3.2 输出:2.3.3 解释: 2.4 增加后向移动和 `->` 运算符2.4.1关键点:2.4.2 增加后向移动和 `->` 运算符的实现代码: 2.5 测试前后移动和 `->` 运算符2.5.1 目的:2.5.2 测试代码:2.5.3 输出:2.5.4 解释: 2.6 为什么不能简单使用 `const` 修饰?2.6.1 问题解释:2.6.2 为什么不能简单使用 `const` 修饰?2.6.3 错误示例:直接使用 `const` 修饰2.6.4 错误代码:2.6.5 错误分析: 2.7 正确的解决方案:使用模板参数区分 `const` 和 `non-const`2.7.1 使用模板参数的好处:2.7.2 实现代码: 2.8 测试模板泛化后的迭代器2.8.1 测试代码:2.8.2 输出结果:2.8.3 解释: 3. `list` 容器的基本操作3.1 构造函数3.2 构造函数分析: 4. 插入与删除操作4.1 插入操作4.1.1 插入操作分析: 4.2 删除操作4.2.1 删除操作分析: 5. 反向迭代器的设计5.1 反向迭代器分析: 6. 迭代器失效问题6.1 删除操作中的迭代器失效6.2 错误使用示例6.3 解决方案 7. 总结与展望 完整的 `list` 容器实现代码

从零实现 list 容器:细粒度剖析与代码实现

接上篇【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器

? 欢迎讨论:学习过程中有问题吗?随时在评论区与我交流。你们的互动是我创作的动力!

? 支持我:如果你觉得这篇文章对你有帮助,请点赞、收藏并分享给更多朋友吧!
? 一起成长:欢迎分享给更多对计算机视觉和图像处理感兴趣的小伙伴,让我们共同进步!

本文详细介绍如何从零开始实现一个 C++ list 容器,帮助读者深入理解 list 的底层实现,包括核心数据结构、迭代器的设计、以及常见的插入、删除等操作。从初学者到进阶开发者都能从中受益。


前言

在 C++ 标准模板库 (STL) 中,list 是一种双向链表容器,适合频繁的插入和删除操作。它与 vector 的主要区别在于 list 不支持随机访问,并且在进行插入、删除操作时无需移动其他元素。这使得 list 在某些需要大量动态修改元素的场景下具有独特优势,例如链表的插入删除操作具有 O(1) 的时间复杂度。

为了更好地理解 list 的工作原理,本文将从零开始实现一个简化版的 list,并详细分析每个步骤背后的实现原理及其易错点。


1. list 的核心数据结构

list 的实现中,底层是通过双向链表结构来存储数据。双向链表中的每个节点不仅包含数据,还包含指向前一个节点和后一个节点的两个指针。以下是节点结构的定义:

namespace W {    // 定义链表节点    template<class T>    struct ListNode {        T _val;               // 节点存储的值        ListNode* _prev;      // 指向前一个节点        ListNode* _next;      // 指向后一个节点        ListNode(const T& val = T()) : _val(val), _prev(nullptr), _next(nullptr) {}    };}
1.1节点结构分析:
_val:存储节点的数据。_prev 和 _next:分别指向前一个节点和后一个节点,便于实现双向链表的遍历、插入和删除操作。

该结构简单明了,双向链表的节点可以方便地进行前向和后向操作。接下来我们将实现如何使用该结构构建一个完整的 list 容器。


2. 迭代器设计与实现

2.1 为什么 list 需要迭代器?

在 C++ 中,vector 是一种动态数组,元素在内存中是连续存储的,因此我们可以使用下标快速访问元素,例如 vec[0] 可以直接访问 vector 的第一个元素。而 list 底层是通过链表结构实现的,每个节点在内存中的位置并不连续。因此,链表无法像数组一样通过下标随机访问元素。每个节点都通过指针链接到前一个节点(_prev)和后一个节点(_next)。为了遍历链表,我们需要使用迭代器。

迭代器的作用类似于一个指针,它指向链表中的某个节点,允许我们通过类似指针的方式来访问和操作链表节点。与普通指针不同,迭代器提供了更高级的功能,并且能够保持接口的一致性,因此它成为了 STL 容器中访问元素的核心工具。


2.2 实现一个简单的迭代器

为了实现最基本的链表迭代器,首先我们需要定义链表节点的结构。该结构已经在上文定义了。

接下来,我们将实现 ListIterator,它内部保存一个指向 ListNode 的指针 _node,并支持以下基本操作:

解引用操作:通过 *it 访问链表节点中的值。前向移动操作:通过 ++it 访问链表中的下一个节点。比较操作:通过 it != end() 判断两个迭代器是否相等。
2.2.1 迭代器代码实现:
namespace W {    template<class T>    class ListIterator {        typedef ListNode<T> Node;  // 使用 Node 表示链表节点类型    public:        // 构造函数,接受一个指向链表节点的指针        ListIterator(Node* node = nullptr) : _node(node) {}        // 解引用操作,返回节点的值        T& operator*() { return _node->_val; }        // 前向移动操作,指向下一个节点        ListIterator& operator++() {            _node = _node->_next;  // 将当前节点移动到下一个节点            return *this;  // 返回自身以支持链式调用        }        // 比较操作,判断两个迭代器是否相等        bool operator!=(const ListIterator& other) const { return _node != other._node; }    private:        Node* _node;  // 迭代器指向的链表节点    };}
2.2.2 解释:
构造函数:初始化一个指向链表节点的指针 _node,用于遍历链表。operator*:返回节点存储的值 _valoperator++:将迭代器移动到链表中的下一个节点。operator!=:用于判断两个迭代器是否相等。
2.3 测试简单迭代器

为了验证我们刚刚实现的迭代器功能,先创建一些链表节点,并将它们链接成一个链表。然后我们使用迭代器遍历链表并输出每个节点的值。

2.3.1 测试代码:
#include <iostream>int main() {    // 创建三个节点,分别存储值 1、2、3    W::ListNode<int> node1(1);          W::ListNode<int> node2(2);          W::ListNode<int> node3(3);          // 链接节点形成链表    node1._next = &node2;  // node1 的下一个节点是 node2    node2._prev = &node1;  // node2 的前一个节点是 node1    node2._next = &node3;  // node2 的下一个节点是 node3    node3._prev = &node2;  // node3 的前一个节点是 node2    // 创建迭代器,指向第一个节点    W::ListIterator<int> it(&node1);    // 使用迭代器遍历链表并输出每个节点的值    while (it != nullptr) {        std::cout << *it << std::endl;  // 输出当前节点的值        ++it;  // 前向移动到下一个节点    }    return 0;}
2.3.2 输出:
123
2.3.3 解释:
迭代器 it 初始指向第一个节点 node1。通过 *it 获取节点的值,并通过 ++it 将迭代器移动到下一个节点,直到链表末尾。
2.4 增加后向移动和 -> 运算符

目前的迭代器只能进行前向移动,而 list双向链表,因此我们还需要增加后向移动 (--) 的功能,使迭代器可以从链表末尾向前遍历。同时,为了让迭代器像指针一样操作,我们还需要重载 -> 运算符,以便可以通过 -> 访问链表节点的成员。

2.4.1关键点:

_val 是基本数据类型(如 int)时,可以直接通过 *it 来获取节点的值,而不需要使用 *(it->)。虽然 *(it->) 语法上是正确的,但显得繁琐且不必要。

为什么 *(it->) 是正确的?
因为 it-> 是在调用 operator->(),返回 _val 的指针,然后 *(it->) 解引用该指针。语法上是没有问题的,但通常我们直接使用 *it 更简洁。

_val 是自定义类型时,可以使用 it->x 直接访问自定义类型的成员变量 x。编译器会将 it->x 优化为 it.operator->()->x,让访问更加方便。

2.4.2 增加后向移动和 -> 运算符的实现代码:
namespace W {    template<class T>    class ListIterator {        typedef ListNode<T> Node;    public:        ListIterator(Node* node = nullptr) : _node(node) {}        // 解引用操作,返回节点的值        T& operator*() { return _node->_val; }        // 指针操作,返回节点的指针        T* operator->() { return &(_node->_val); }        // 前向移动        ListIterator& operator++() {            _node = _node->_next;            return *this;        }        // 后向移动        ListIterator& operator--() {            _node = _node->_prev;            return *this;        }        // 比较操作        bool operator!=(const ListIterator& other) const { return _node != other._node; }    private:        Node* _node;    };}

2.5 测试前后移动和 -> 运算符
2.5.1 目的:

我们通过一个测试程序验证迭代器的前向后向移动功能,同时通过 -> 运算符访问链表节点的值。我们会分别测试基本数据类型 int 和自定义类型 CustomType 的场景,展示迭代器在不同数据类型下的使用方式。

2.5.2 测试代码:

对于 int 类型,我们可以通过 *it 来访问节点的值,而不需要使用 *(it->),虽然 *(it->) 也是合法的,但没有必要。

对于自定义类型 CustomType,可以通过 it->x 来访问自定义类型 CustomType 中的成员变量 x

#include <iostream>struct CustomType {    int x;};int main() {    // 创建三个 int 类型的节点,分别存储值 1、2、3    W::ListNode<int> node1(1);          W::ListNode<int> node2(2);          W::ListNode<int> node3(3);          // 链接节点形成链表    node1._next = &node2;    node2._prev = &node1;    node2._next = &node3;    node3._prev = &node2;    // 创建迭代器,初始指向第二个节点    W::ListIterator<int> it(&node2);    // 对于 int 类型,使用 *it 访问节点的值    std::cout << *it << std::endl;  // 输出 2    // 后向移动,指向第一个节点    --it;    std::cout << *it << std::endl;  // 输出 1    // 前向移动,指向第三个节点    ++it;    ++it;    std::cout << *it << std::endl;  // 输出 3    // 创建自定义类型 CustomType 的节点    W::ListNode<CustomType> customNode1({1});    W::ListNode<CustomType> customNode2({2});    customNode1._next = &customNode2;    customNode2._prev = &customNode1;    // 创建自定义类型 CustomType 的迭代器    W::ListIterator<CustomType> customIt(&customNode1);    // 使用 it-> 访问 CustomType 的成员变量 x    std::cout << customIt->x << std::endl;  // 输出 1    return 0;}
2.5.3 输出:
2131
2.5.4 解释:
对于 int 类型的节点,我们通过 *it 访问节点的值,++it--it 分别实现了前向和后向移动。对于自定义类型 CustomType 的节点,通过 it->x 可以访问自定义类型成员变量 x。编译器会将 it->x 优化为 it.operator->()->x,使得操作简化。
2.6 为什么不能简单使用 const 修饰?
2.6.1 问题解释:

vector 中,const_iterator 通过 const 修饰符即可实现不可修改的迭代器,这是因为 vector 的底层存储是连续的内存块,通过 const 限制访问的值即可。而 list 的底层是双向链表,迭代器不仅需要访问链表节点的值,还需要操作链表的前驱和后继节点(即 _prev_next 指针)。直接使用 const 修饰迭代器无法满足这些需求,因为 const 限制了对链表结构的必要修改。

2.6.2 为什么不能简单使用 const 修饰?
const 修饰的迭代器会限制所有成员的修改,包括迭代器内部的 _node 指针。如果我们对 const 迭代器执行 ++-- 操作,这些操作会修改 _node,而 const 禁止这种修改。
2.6.3 错误示例:直接使用 const 修饰

下面是一个简单的错误示例,展示了为什么简单地使用 const 修饰符会导致问题:

2.6.4 错误代码:
#include <iostream>template<class T>struct ListNode {    T _val;    ListNode* _prev;    ListNode* _next;    ListNode(T val) : _val(val), _prev(nullptr), _next(nullptr) {}};template<class T>class ListIterator {    typedef ListNode<T> Node;public:    ListIterator(Node* node = nullptr) : _node(node) {}    // 解引用操作,返回节点的值    T& operator*() { return _node->_val; }    // 前向移动    ListIterator& operator++() {        _node = _node->_next;        return *this;    }    // 后向移动    ListIterator& operator--() {        _node = _node->_prev;        return *this;    }private:    Node* _node;};int main() {    // 创建三个节点,分别存储值 1、2、3    ListNode<int> node1(1), node2(2), node3(3);    // 链接节点形成链表    node1._next = &node2;    node2._prev = &node1;    node2._next = &node3;    node3._prev = &node2;    // 尝试创建一个 const 迭代器    const ListIterator<int> constIt(&node1);    // 错误1:前向移动时,编译器报错,因为 ++ 操作符不能对 const 迭代器操作    ++constIt;  // 编译错误    // 错误2:解引用操作也无法进行修改    *constIt = 5;  // 编译错误}
2.6.5 错误分析:

无法执行前向移动 (++constIt):由于 const 修饰符限制了修改成员变量 _node,因此 ++ 操作无法执行,因为该操作会修改迭代器的内部指针。

无法修改节点的值 (*constIt = 5):由于迭代器是 const 的,解引用操作也不能用于修改节点的值,因此编译器会报错。


2.7 正确的解决方案:使用模板参数区分 constnon-const

为了处理上述问题,我们可以使用模板参数来区分 constnon-const 的情况。通过模板参数 RefPtr,我们可以控制迭代器的行为,使得它在常量链表和非常量链表中都能正常工作。

2.7.1 使用模板参数的好处:
灵活性:可以根据需要处理 constnon-const 的迭代器场景。安全性:对于常量链表,保证不能修改节点的值;对于非常量链表,允许修改。代码复用:通过模板参数,既可以编写一套代码,处理 constnon-const 两种情况。
2.7.2 实现代码:
namespace W {    template<class T, class Ref, class Ptr>    class ListIterator {        typedef ListNode<T> Node;  // 使用 Node 表示链表节点类型    public:        ListIterator(Node* node = nullptr) : _node(node) {}        // 解引用操作,返回节点的值        Ref operator*() const { return _node->_val; }        // 指针操作,返回节点的值的指针        Ptr operator->() const { return &_node->_val; }        // 前向移动        ListIterator& operator++() {            _node = _node->_next;            return *this;        }        // 后向移动        ListIterator& operator--() {            _node = _node->_prev;            return *this;        }        // 比较操作,判断两个迭代器是否相等        bool operator!=(const ListIterator& other) const { return _node != other._node; }    private:        Node* _node;    };}

2.8 测试模板泛化后的迭代器

现在我们通过测试来验证模板参数 RefPtr 的设计是否能够正确处理常量链表和非常量链表的迭代器情况。以下场景将会被测试:

非常量链表:迭代器允许修改节点的值。常量链表const 迭代器只能读取节点值,不能修改。
2.8.1 测试代码:
#include <iostream>struct CustomType {    int x;};int main() {    // 创建三个 int 类型的节点,分别存储值 1、2、3    W::ListNode<int> node1(1);          W::ListNode<int> node2(2);          W::ListNode<int> node3(3);          // 链接节点形成链表    node1._next = &node2;    node2._prev = &node1;    node2._next = &node3;    node3._prev = &node2;    // 创建一个非常量迭代器    W::ListIterator<int, int&, int*> it(&node1);    std::cout << *it << std::endl;  // 输出 1    ++it;  // 前向移动    std::cout << *it << std::endl;  // 输出 2    // 修改节点的值    *it = 20;    std::cout << *it << std::endl;  // 输出 20    // 创建一个常量链表节点    const W::ListNode<int> constNode1(1);    const W::ListNode<int> constNode2(2);    constNode1._next = &constNode2;    // 创建一个常量迭代器    W::ListIterator<int, const int&, const int*> constIt(&constNode1);    std::cout << *constIt << std::endl;  // 输出 1    // 常量迭代器不允许修改值    // *constIt = 10;  // 错误:无法修改常量链表节点的值    return 0;}
2.8.2 输出结果:
12201
2.8.3 解释:
非常量链表: 使用 it 迭代器遍历链表,前向移动并修改节点的值。*it = 20 修改了第二个节点的值。 常量链表: 使用 constIt 迭代器只能读取节点的值,无法修改。如果尝试 *constIt = 10,编译器会报错,禁止修改。

3. list 容器的基本操作

3.1 构造函数

我们将实现多种构造函数,允许用户创建空链表、指定大小的链表,以及从迭代器区间构造链表。

namespace W {    template<class T>    class list {        typedef ListNode<T> Node;            public:        typedef ListIterator<T, T&, T*> iterator;        // 默认构造函数        list() { CreateHead(); }        // 指定大小的构造函数        list(size_t n, const T& val = T()) {            CreateHead();            for (size_t i = 0; i < n; ++i)                push_back(val);        }        // 迭代器区间构造函数        template<class Iterator>        list(Iterator first, Iterator last) {            CreateHead();            while (first != last) {                push_back(*first);                ++first;            }        }        // 析构函数        ~list() {            clear();            delete _head;        }        // 头节点初始化        void CreateHead() {            _head = new Node();            _head->_next = _head;            _head->_prev = _head;        }        // 清空链表        void clear() {            Node* cur = _head->_next;            while (cur != _head) {                Node* next = cur->_next;                delete cur;                cur = next;            }            _head->_next = _head;            _head->_prev = _head;        }    private:        Node* _head;  // 指向头节点的指针    };}
3.2 构造函数分析:
默认构造函数:创建一个空链表,并初始化头节点。指定大小构造函数:使用 push_back 向链表中插入 n 个值为 val 的节点。迭代器区间构造函数:通过一对迭代器 [first, last) 形成的区间构造链表。

4. 插入与删除操作

list 容器的优势在于高效的插入与删除操作。我们将在指定位置插入节点,或删除指定节点,插入和删除的时间复杂度均为 O(1)。

4.1 插入操作
namespace W {    template<class T>    class list {        typedef ListNode<T> Node;        typedef ListIterator<T, T&, T*> iterator;    public:        // 在指定位置前插入新节点        iterator insert(iterator pos, const T& val) {            Node* newNode = new Node(val);            Node* cur = pos._node;            newNode->_next = cur;            newNode->_prev = cur->_prev;            cur->_prev->_next = newNode;            cur->_prev = newNode;            return iterator(newNode);        }        // 在链表末尾插入新节点        void push_back(const T& val) { insert(end(), val); }        // 在链表头部插入新节点        void push_front(const T& val) { insert(begin(), val); }    };}
4.1.1 插入操作分析:
插入效率:由于链表的结构,插入操作只需调整节点的指针,不涉及大规模的内存移动,时间复杂度为 O(1)。头尾插入:通过 push_backpush_front 可以方便地在链表的头部和尾部插入新节点。
4.2 删除操作
namespace W {    template<class T>    class list {        typedef ListNode<T> Node;        typedef ListIterator<T, T&, T*> iterator;    public:        // 删除指定位置的节点        iterator erase(iterator pos) {            Node* cur = pos._node;            Node* nextNode = cur->_next;            cur->_prev->_next = cur->_next;            cur->_next->_prev = cur->_prev;            delete cur;            return iterator(nextNode);        }        // 删除链表头部节点        void pop_front() { erase(begin()); }        // 删除链表尾部节点        void pop_back() { erase(--end()); }    };}
4.2.1 删除操作分析:
删除效率:删除节点同样是通过调整指针实现,时间复杂度为 O(1)。头尾删除:通过 pop_frontpop_back 实现头部和尾部节点的删除。

5. 反向迭代器的设计

在双向链表中,反向迭代器可以通过包装普通迭代器实现。反向迭代器的 ++ 对应正向迭代器的 --,反之亦然。

namespace W {    template<class Iterator>    class ReverseListIterator {        Iterator _it;    public:        ReverseListIterator(Iterator it) : _it(it) {}        auto operator*() { Iterator temp = _it; --temp; return *temp; }        auto operator->() { return &(operator*()); }        ReverseListIterator& operator++() { --_it; return *this; }        ReverseListIterator operator++(int) { ReverseListIterator temp = *this; --_it; return temp; }        ReverseListIterator& operator--() { ++_it; return *this; }        ReverseListIterator operator--(int) { ReverseListIterator temp = *this; ++_it; return temp; }        bool operator==(const ReverseListIterator& other) const { return _it == other._it; }        bool operator!=(const ReverseListIterator& other) const { return !(*this == other); }    };}
5.1 反向迭代器分析:
解引用和指针操作:反向迭代器的 operator*operator-> 实际上是操作前一个节点。前向和后向移动:反向迭代器的 ++ 操作是通过调用普通迭代器的 -- 来实现的。

6. 迭代器失效问题

在操作 list 容器时,特别是在删除节点的过程中,可能会出现迭代器失效问题。迭代器失效是指当某个节点被删除后,指向该节点的迭代器变得无效,继续使用这个迭代器将导致未定义行为。因此,在删除节点后,必须使用返回的迭代器进行下一步操作,以避免迭代器失效问题。

6.1 删除操作中的迭代器失效

假设我们使用 erase 函数删除链表中的节点。如果我们继续使用之前的迭代器而不更新它,程序将会崩溃,因为该迭代器指向的内存已经被释放。

void TestIteratorInvalidation() {    W::list<int> lst = {1, 2, 3, 4, 5};    auto it = lst.begin();        while (it != lst.end()) {        it = lst.erase(it);  // 正确:使用 erase 返回的新迭代器    }}
6.2 错误使用示例

下面的示例展示了错误的迭代器使用方式,迭代器在删除操作后没有更新,导致其指向了已被释放的内存。

void WrongIteratorUsage() {    W::list<int> lst = {1, 2, 3, 4, 5};    auto it = lst.begin();        while (it != lst.end()) {        lst.erase(it);  // 错误:删除后 it 失效        ++it;  // 未更新的迭代器继续操作,导致崩溃    }}
6.3 解决方案

为了解决迭代器失效问题,每次删除节点后都要使用 erase 返回的新迭代器,确保迭代器指向的内存有效。

void CorrectIteratorUsage() {    W::list<int> lst = {1, 2, 3, 4, 5};    auto it = lst.begin();        while (it != lst.end()) {        it = lst.erase(it);  // 正确:每次使用 erase 返回的新迭代器    }}

7. 总结与展望

通过这篇文章,我们从零开始模拟实现了一个 list 容器,并深入剖析了以下几个方面:

双向链表的核心数据结构:理解链表节点的 _prev_next 指针,以及如何通过它们实现双向遍历。迭代器的设计:实现了 list 的正向和反向迭代器,支持前向移动、后向移动和解引用操作。模板参数解决 constnon-const 场景:通过模板参数 RefPtr,灵活应对 const 链表和非常量链表的不同需求,保证代码的安全性和灵活性。插入与删除操作:高效的插入和删除操作,时间复杂度均为 O(1),体现了链表结构的优势。反向迭代器的实现:通过包装普通迭代器,设计了一个反向迭代器,方便反向遍历链表。迭代器失效问题:讲解了迭代器失效的原因及其解决方法,避免了未定义行为。

今后,读者您可以尝试进一步扩展这篇文章中的 list 容器,例如:

实现更多的容器操作:如 findsort 等高级操作。实现与 STL 接口兼容的完整 list 容器:包括迭代器失效的处理、异常安全的插入与删除操作。性能优化与内存管理:如使用自定义的内存池优化链表的节点分配和释放。

通过持续的实践和优化,我们能够更深入地理解 C++ 标准库的实现细节,并在开发过程中提高代码的效率和健壮性。


完整的 list 容器实现代码

最后,附上完整的代码实现,包括链表节点结构、迭代器、插入删除操作等。

namespace W {    // 链表节点结构    template<class T>    struct ListNode {        T _val;        ListNode* _prev;        ListNode* _next;        ListNode(const T& val = T()) : _val(val), _prev(nullptr), _next(nullptr) {}    };    // 正向迭代器    template<class T, class Ref, class Ptr>    class ListIterator {        typedef ListNode<T> Node;    public:        ListIterator(Node* node = nullptr) : _node(node) {}        Ref operator*() const { return _node->_val; }        Ptr operator->() const { return &_node->_val; }        ListIterator& operator++() {            _node = _node->_next;            return *this;        }        ListIterator& operator--() {            _node = _node->_prev;            return *this;        }        bool operator!=(const ListIterator& other) const { return _node != other._node; }    private:        Node* _node;    };    // 反向迭代器    template<class Iterator>    class ReverseListIterator {        Iterator _it;    public:        ReverseListIterator(Iterator it) : _it(it) {}        auto operator*() { Iterator temp = _it; --temp; return *temp; }        auto operator->() { return &(operator*()); }        ReverseListIterator& operator++() { --_it; return *this; }        ReverseListIterator operator++(int) { ReverseListIterator temp = *this; --_it; return temp; }        ReverseListIterator& operator--() { ++_it; return *this; }        ReverseListIterator operator--(int) { ReverseListIterator temp = *this; ++_it; return temp; }        bool operator==(const ReverseListIterator& other) const { return _it == other._it; }        bool operator!=(const ReverseListIterator& other) const { return !(*this == other); }    };    // list 容器实现    template<class T>    class list {        typedef ListNode<T> Node;        typedef ListIterator<T, T&, T*> iterator;    public:        list() { CreateHead(); }        list(size_t n, const T& val = T()) {            CreateHead();            for (size_t i = 0; i < n; ++i)                push_back(val);        }        ~list() {            clear();            delete _head;        }        iterator begin() { return iterator(_head->_next); }        iterator end() { return iterator(_head); }        void push_back(const T& val) { insert(end(), val); }        void push_front(const T& val) { insert(begin(), val); }        iterator insert(iterator pos, const T& val) {            Node* newNode = new Node(val);            Node* cur = pos._node;            newNode->_next = cur;            newNode->_prev = cur->_prev;            cur->_prev->_next = newNode;            cur->_prev = newNode;            return iterator(newNode);        }        iterator erase(iterator pos) {            Node* cur = pos._node;            Node* nextNode = cur->_next;            cur->_prev->_next = cur->_next;            cur->_next->_prev = cur->_prev;            delete cur;            return iterator(nextNode);        }        void pop_front() { erase(begin()); }        void pop_back() { erase(--end()); }        void clear() {            Node* cur = _head->_next;            while (cur != _head) {                Node* next = cur->_next;                delete cur;                cur = next;            }            _head->_next = _head;            _head->_prev = _head;        }    private:        void CreateHead() {            _head = new Node();            _head->_next = _head;            _head->_prev = _head;        }        Node* _head;    };}

以上就是关于【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

在这里插入图片描述


点击全文阅读


本文链接:http://zhangshiyu.com/post/166788.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1