✨✨✨学习的道路很枯燥,希望我们能并肩走下来!
文章目录
目录
文章目录
前言
一 红黑树的概念
二 红黑树的性质
三 红黑树节点的定义
四 红黑树结构
五 红黑树的插入操作
六 红黑树的验证
七 红黑树的删除
八 红黑树与AVL树的比较
九 红黑树的迭代器
十 红黑树全代码
总结
前言
本篇详细介绍了进一步介绍C++中的红黑树,让使用者对红黑树有更加深刻的认知,而不是仅仅停留在表面,更好的模拟,为了更好的使用. 文章可能出现错误,如有请在评论区指正,让我们一起交流,共同进步!
一 红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。
二 红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上(根到NIP节点为一条路径),均包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
三 红黑树节点的定义
// 节点的颜色enum Color{RED, BLACK};// 红黑树节点的定义template<class T>struct RBTreeNode{ RBTreeNode(const ValueType& data = ValueType(),Color color = RED) : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr) , _data(data), _color(color) {} RBTreeNode<ValueType>* _pLeft; // 节点的左孩子 RBTreeNode<ValueType>* _pRight; // 节点的右孩子 RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段) T _data; // 节点的值域 Color _color; // 节点的颜色};
四 红黑树结构
为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了 与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft 域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:
五 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色(黑节点一定破坏规则4),因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
⊚ 情况一: cur为红,p为红,g为黑,u存在且为红
⊚ cur为红,p为红,g为黑,u不存在/u存在且为黑
⊚ 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋转处理)
插入代码如下:
bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data);// 新增节点。颜色红色给红色cur->_col = RED;if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;// g// p uif (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED){// u存在且为红 -》变色再继续往上处理parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else{// u存在且为黑或不存在 -》旋转+变色if (cur == parent->_left){// g// p u//c//单旋RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// p u// c//双旋RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{// g// u pNode* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色// g// u p// cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//g// u p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}
六 红黑树的验证
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}
2. 检测其是否满足红黑树的性质
bool IsBalance(){ if (_root == nullptr) return true; if (_root->_col == RED) //检测根是否为黑色 { cout << "异常:根为红色" << endl; return false; } // 预先求出某条路径的黑色节点数量 size_t blackcount = 0; Node *cur = _root; while (cur) { if (cur->_col == BLACK) blackcount++; cur = cur->_left; } size_t k = 0; //作为参数传入,用于统计路径的黑色节点数量 return _IsBalance(_root, k, blackcount);} bool _IsBalance(Node *root, size_t k, size_t blackcount){ if (root == nullptr) //走到路径结尾 { if (k != blackcount) { cout << "异常:路径黑节点数目不同" << endl; return false; } return true; } if (root->_col == RED && root->_parent->_col == RED) //判断是否有连续红节点 { cout << "异常:出现连续红节点" << endl; return false; } if (root->_col == BLACK) //统计黑色节点数量 k++; return _IsBalance(root->_left, k, blackcount) && _IsBalance(root->_right, k, blackcount); //进行递归}
七 红黑树的删除
红黑树的删除本节不做讲解,参考《算法导论》或者《STL源码剖析》
红黑树 - _Never_ - 博客园 (cnblogs.com)
八 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
九 红黑树的迭代器
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代 器,需要考虑以前问题:
⊚ begin()与end() :
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后, 可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块? 能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:
⊚ operator++()与operator--()
operator++():
//typedef RBTreeIterator<T> Self;Self& operator++(){if (_node->_right){// 右不为空,右子树最左节点就是中序下一个Node* leftMost = _node->_right;while (leftMost->_left){leftMost = leftMost->_left;}_node = leftMost;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}
operator--():
Self& operator--(){//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不//存在// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置if (_node->_parent->_parent == _node && _node->_col == RED)_node = _node->_right;else if (_node->_left){// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点_node = _node->_left;while (_node->_right)_node = _node->_right;}else{// _pNode的左子树不存在,只能向上找Node pParent = _node->_parent;while (_node == pParent->_left){_node = pParent;pParent = _node->_parent;}_node = pParent;}}
迭代器全代码:
template<class T>struct RBTreeIterator{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}Self& operator++(){if (_node->_right){// 右不为空,右子树最左节点就是中序下一个Node* leftMost = _node->_right;while (leftMost->_left){leftMost = leftMost->_left;}_node = leftMost;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不//存在// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置if (_node->_parent->_parent == _node && _node->_col == RED)_node = _node->_right;else if (_node->_left){// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点_node = _node->_left;while (_node->_right)_node = _node->_right;}else{// _pNode的左子树不存在,只能向上找Node pParent = _node->_parent;while (_node == pParent->_left){_node = pParent;pParent = _node->_parent;}_node = pParent;}}T& operator*(){return _node->_data;}bool operator!= (const Self& s){return _node != s._node;}};
十 红黑树全代码
#pragma once#include<iostream>#include<vector>#include<assert.h>using namespace std;enum Colour{RED,BLACK};template<class T>struct RBTreeNode{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;RBTreeNode(const T& data): _data(data), _left(nullptr), _right(nullptr), _parent(nullptr){}};template<class T>struct RBTreeIterator{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}Self& operator++(){if (_node->_right){// 右不为空,右子树最左节点就是中序下一个Node* leftMost = _node->_right;while (leftMost->_left){leftMost = leftMost->_left;}_node = leftMost;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不//存在// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置if (_node->_parent->_parent == _node && _node->_col == RED)_node = _node->_right;else if (_node->_left){// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点_node = _node->_left;while (_node->_right)_node = _node->_right;}else{// _pNode的左子树不存在,只能向上找Node pParent = _node->_parent;while (_node == pParent->_left){_node = pParent;pParent = _node->_parent;}_node = pParent;}}T& operator*(){return _node->_data;}bool operator!= (const Self& s){return _node != s._node;}};template<class K, class T, class KeyOfT>class RBTree{typedef RBTreeNode<T> Node;public:typedef RBTreeIterator<T> Iterator;Iterator Begin(){Node* leftMost = _root;while (leftMost && leftMost->_left){leftMost = leftMost->_left;}return Iterator(leftMost);}Iterator End(){return Iterator(nullptr);}RBTree() = default;RBTree(const RBTree& t){_root = Copy(t._root);}RBTree& operator=(RBTree t){swap(_root, t._root);return *this;}~RBTree(){Destroy(_root);_root = nullptr;}bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data);// 新增节点。颜色红色给红色cur->_col = RED;if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;// g// p uif (parent == grandfather->_left){Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED){// u存在且为红 -》变色再继续往上处理parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else{// u存在且为黑或不存在 -》旋转+变色if (cur == parent->_left){// g// p u//c//单旋RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// p u// c//双旋RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{// g// u pNode* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色// g// u p// cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//g// u p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void InOrder(){_InOrder(_root);cout << endl;}int Height(){return _Height(_root);}int Size(){return _Size(_root);}bool IsBalance(){if (_root == nullptr)return true;if (_root->_col == RED){return false;}// 参考值int refNum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refNum;}cur = cur->_left;}return Check(_root, 0, refNum);}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}private:bool Check(Node* root, int blackNum, const int refNum){if (root == nullptr){//cout << blackNum << endl;if (refNum != blackNum){cout << "存在黑色节点的数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "存在连续的红色节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}int _Size(Node* root){return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}void RotateL(Node* parent){_rotateNum++;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* parentParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (parentParent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}}void RotateR(Node* parent){_rotateNum++;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parentParent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}}void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newRoot = new Node(root->_kv);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}private:Node* _root = nullptr;public:int _rotateNum = 0; //旋转次数};
总结
✨✨✨各位读友,本篇分享到内容是否更好的让你理解红黑树,如果对你有帮助给个?赞鼓励一下吧!!
???世上没有绝望的处境,只有对处境绝望的人。
感谢每一位一起走到这的伙伴,我们可以一起交流进步!!!一起加油吧!!