当前位置:首页 » 《关于电脑》 » 正文

【Python】遥感数据趋势分析Sen+mk

15 人参与  2024年04月27日 13:29  分类 : 《关于电脑》  评论

点击全文阅读


方法介绍

1.Theil-Sen Median方法又被称为 Sen 斜率估计,是一种稳健的非参数统计的趋势计算方法。该方法计算效率高,对于测量误差和离群数据不敏感,常被用于长时间序列数据的趋势分析中。对于后续代码计算结果中的slope.tif解读,当slope大于0表示随时间序列呈现上升趋势;slope小于0表示随时间序列呈现下降趋势。

2.Mann-Kendall是一种非参数统计检验方法,最初由Mann在1945年提出,后由Kendall和Sneyers进一步完善,其优点是不需要测量值服从正态分布,也不要求趋势是线性的,并且不受缺失值和异常值的影响,在长时间序列数据的趋势显著检验中得到了十分广泛的应用。对于后续代码计算结果中的z.tif,当|Z|大于1.65、1.96和2.58时,表示趋势分别通过了置信度为90%、95%和99%的显著性检验。

代码介绍

此代码大部分来自Github大佬分享,我修改了报错的个别代码后亲自测试pycharm下只需改路径就可以运行:

# coding:utf-8'''已全部实现'''import numpy as npimport pymannkendall as mkimport osimport rasterio as rasdef sen_mk_test(image_path, outputPath):    # image_path:影像的存储路径    # outputPath:结果输出路径    global path1    filepaths = []    for file in os.listdir(path1):        filepath1 = os.path.join(path1, file)        filepaths.append(filepath1)    # 获取影像数量    num_images = len(filepaths)    # 读取影像数据    img1 = ras.open(filepaths[0])    # 获取影像的投影,高度和宽度    transform1 = img1.transform    height1 = img1.height    width1 = img1.width    array1 = img1.read()    img1.close()    # 读取所有影像    for path1 in filepaths[1:]:        if path1[-3:] == 'tif':            print(path1)            img2 = ras.open(path1)            array2 = img2.read()            array1 = np.vstack((array1, array2))            img2.close()    nums, width, height = array1.shape    # 写影像    def writeImage(image_save_path, height1, width1, para_array, bandDes, transform1):        with ras.open(                image_save_path,                'w',                driver='GTiff',                height=height1,                width=width1,                count=1,                dtype=para_array.dtype,                crs='+proj=latlong',                transform=transform1,        ) as dst:            dst.write_band(1, para_array)            dst.set_band_description(1, bandDes)        del dst    # 输出矩阵,无值区用-9999填充    slope_array = np.full([width, height], -9999.0000)    z_array = np.full([width, height], -9999.0000)    Trend_array = np.full([width, height], -9999.0000)    Tau_array = np.full([width, height], -9999.0000)    s_array = np.full([width, height], -9999.0000)    p_array = np.full([width, height], -9999.0000)    # 只有有值的区域才进行mk检验    c1 = np.isnan(array1)    sum_array1 = np.sum(c1, axis=0)    nan_positions = np.where(sum_array1 == num_images)    positions = np.where(sum_array1 != num_images)    # 输出总像元数量    print("all the pixel counts are {0}".format(len(positions[0])))    # mk test    for i in range(len(positions[0])):        print(i)        x = positions[0][i]        y = positions[1][i]        mk_list1 = array1[:, x, y]        trend, h, p, z, Tau, s, var_s, slope, intercept = mk.original_test(mk_list1)        '''                trend: tells the trend (increasing, decreasing or no trend)                h: True (if trend is present) or False (if trend is absence)                p: p-value of the significance test                z: normalized test statistics                Tau: Kendall Tau                s: Mann-Kendal's score                var_s: Variance S                slope: Theil-Sen estimator/slope                intercept: intercept of Kendall-Theil Robust Line        '''        if trend == "decreasing":            trend_value = -1        elif trend == "increasing":            trend_value = 1        else:            trend_value = 0        slope_array[x, y] = slope  # senslope        s_array[x, y] = s        z_array[x, y] = z        Trend_array[x, y] = trend_value        p_array[x, y] = p        Tau_array[x, y] = Tau    all_array = [slope_array, Trend_array, p_array, s_array, Tau_array, z_array]    slope_save_path = os.path.join(result_path, "slope.tif")    Trend_save_path = os.path.join(result_path, "Trend.tif")    p_save_path = os.path.join(result_path, "p.tif")    s_save_path = os.path.join(result_path, "s.tif")    tau_save_path = os.path.join(result_path, "tau.tif")    z_save_path = os.path.join(result_path, "z.tif")    image_save_paths = [slope_save_path, Trend_save_path, p_save_path, s_save_path, tau_save_path, z_save_path]    band_Des = ['slope', 'trend', 'p_value', 'score', 'tau', 'z_value']    for i in range(len(all_array)):        writeImage(image_save_paths[i], height1, width1, all_array[i], band_Des[i], transform1)# 调用path1 = r"E:\Test\ACMEI\ACMEI"result_path = r"E:\Test\ACMEI\ACMEImk"sen_mk_test(path1, result_path)

后续处理三步走

1.对于生成的tif栅格,只需要取slope.tif以及z.tif进行重分类。

slope>0赋值1表示增加 |z|>1.96赋值2表示显著

slope=0赋值0表示不变 |z|<=1.96赋值1表示不显著

slope<0赋值-1表示减少

(此处还可根据显著性阈值再细分为更多类,我仅作基本演示分为5类)

2.再相乘得到

-2:显著减少;-1:不显著减少;0:稳定不变;1:不显著增加; 2:显著增加

3.在Arcmap出图即可!

在这里插入图片描述


点击全文阅读


本文链接:http://zhangshiyu.com/post/101075.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1